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Associative Memory Model with Forgetting Process

Using Nonmonotonic Neurons

Kazushi MIMURAT, Masato OKADA'', and Koji KURATA', Members

SUMMARY An associative memory model with a forgetting
process a la Mézard et al. is investigated for a piecewise non-
monotonic output function by the SCSNA proposed by Shiino
and Fukai. Similar to the formal monotonic two-state model
analyzed by Mézard et al., the discussed nonmonotonic model
is also free from a catastrophic deterioration of memory due to
overloading. We theoretically obtain a relationship between the
storage capacity and the forgetting rate, and find that there is
an optimal value of forgetting rate, at which the storage capac-
ity is maximized for the given nonmonotonicity. The maximal
storage capacity and capacity ratio (a ratio of the storage capac-
ity for the conventional correlation learning rule to the maximal
storage capacity) increase with nonmonotonicity, whereas the op-
timal forgetting rate decreases with nonmonotonicity.

key words:  associative memory model, nonmonotonic neuron,
forgetting process, storage capacity, SCSNA

1. Introduction

It is well known that the maximal number of memory
patterns for the Hopfield associative memory model [1]
is 0.14N [2], where N is the number of neurons. A ra-
tio of the maximal number of memory patterns to the
neuron number is called storage capacity. If the num-
ber of memory patterns exceeds 0.14V, all previously
stored memory patterns become unstable, namely there
is a catastrophic deterioration of memory. In order to
avoid this, one can introduce a forgetting mechanism
into the learning process,

_ 1
Ty =nJi ' + 68 Q)

where J;; is the synaptic weight from the j-th neuron
to the i-th neuron, ¢! is the ¢-th component of the ¢-th
memory pattern, and ij is the synaptic weight after em-
bedding the ¢-th memory pattern. The introduced for-
getting mechanism can be obtained by denoting n < 1,
whereas Eq. (1) reproduces the conventional correlation
type learning rule in the case of n = 1, which corre-
sponds to the Hebbian rule. It could be expected that
only the recently stored po memory patterns are sta-
ble, whereas the rest memory patterns are unstable since
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n < 1. As discussed in the next section, there is an op-
timal value of forgetting rate, at which the po is maxi-
mized. Actually, this model was analyzed by Mézard et
al. using the replica theory[3]. They discussed the re-
lationship between pc and 7, and obtained the optimal
value of forgetting rate and the maximal pc. Okada et
al.[4] also analyzed the same model by the statistical
neurodyanmics[5]. They also succeeded in obtaining a
similar relationship between pc and 7, and the optimal
value of forgetting rate and the maximal p¢.

It has been shown that the storage capacity of an
associative memory model can be improved markedly
by replacing the usual sigmoid neurons with nonmono-
tonic ones [6]. Yoshizawa et al.[7] showed that the stor-
age capacity of an associative memory model with op-
timal nonmonotonicity is 0.4, which is approximately
three times as large as that of the Hopfield model[2].
However, when the number of memory patterns exceeds
the storage capacity, all previously stored memory pat-
terns become unstable even in the nonmonotonic model.
In the present paper, we analyze a nonmonotonic model
with a forgetting process by using the self consistent sig-
nal to noise analysis (SCSNA) proposed by Shiino and
Fukai [8],[9]. A piecewise linear model of the non-
monotonic neuron is adopted [ 10]. We discuss the rela-
tionship between pc and 7, and the maximal po at the
optimal forgetting rate.

2. Model

We begin by formulating a recurrent neural network
with N analogue neurons that have an output function
F(-). The network model is studied with an infinite
number of neurons, i.e., N — co. The network dynam-
ics are written with the internal potential w variables
as

d
%xi = —X; —l— F(’U,i),

N
U = Z Jijzj, )

J
where z; denotes an output of the i-th neuron. The in-
ternal potential u variables are assumed to be connected

with each other through the synaptic weights J;; of a
form
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where v is the serial number of the memory pattern; so
that v = 0 corresponds to the latest stored pattern, and
the larger serial number y means that the pattern p was
stored earlier. Equation (3) is equivalent to the infinite
operations result of Eq. (1). Each element &/ of the -th
memory pattern is an independent random variable that
takes a value of 1 or -1 with a probability

Prob[¢# = £1] = % “

Let us discuss how p. and 1 depend on the number
of neurons. The equilibrium of Eq.(2) is obtained by
denoting du;/dt = 0. Assuming that the v-th memory
pattern is rigorously retrieved, i.e., z; = £/, the internal
potential of the i-th neuron u; in the equilibrium state
is

N
u =y Sy [©)
JFi .
1 [es) N
=1+ Y, DT, (6)
p=0,pFv jFi

where the first term on the right-hand side (RHS) is the
retrievable signal, whereas the second term is the cross-
talk noise which prevents £ from being retrieved. The
mean of the cross-talk noise is 0 and its variance is

1 oo N oy 1
D S 3 o R 0

p=0,pFv jFi

We can estimate that the variance should be O(1) with
respect to the number of neurons NV from a finding of the
conventional correlation learning rule in the Hopfield
model[1],[2]. This estimation gives n ~ 1 — O(1/N)
and pc ~ O(N). According to this result, we rewrite n
and v as

2
n = exp (—j—N) ®)
o= ©)

where we define € as the forgetting rate and o as the
loading rate. The loading rate is a ratio of the sequen-
tial number of memory pattern to the number of neu-
rons. Storage capacity ac is also defined as ac = pe/N
using the maximal number of retrievable patterns. Us-
ing the forgetting rate € and the loading rate o, Egs. (6)
and (7) are rewritten as

2
1
Uj = exXp (—%) &+ -2 % (10)

where we replace £ with £&* and z; obeys the Gaus-
sian distribution with mean 0 and variance 1. The S/N
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Fig. 1 Piecewise linear nonmonotonic output function.

ration between the signal and the cross-talk noise in
Eq. (10) is € exp(—ae?/2), which has an maximal value
for e > 0. This fact implies that the storage capac-
ity is determined by not only the amount of the signal
term but also one of the cross-talk noise, i.e., competi-
tion between them, and that there is an optimal value
of forgetting rate, at which the storage capacity a¢ is
maximized.

We discuss the following generalized Hebbian
learning rule in the present paper including the pre-
viously discussed forgetting case,

R < SNy
Ji = oA (4) e (1)
1#=0
Denoting
82

A(s) = exp (—55> (12)

and
1 0Ls<
A(s):{ 0 son s (13)

provides the forgetting case and the conventional cor-
relation learning rule case, respectively. In this paper,
we use the following odd function F(u) in Fig.1 as an
output function

—%u 1, —0 <u <0,
— 1
Fw)=93 —Zu+1, o0<u<®, (14)
0, otherwise.

In this paper, we use 1/6 as a parameter representing a
degree of nonmonotonicity. In the case of 1/6 — 0, the
output function F(-) in Eq. (14) converges on the sign
function sgn(-).

The overlap between the pu-th memory pattern &
and the equilibrium network state  is now defined as

1 N
my, = NZg;xj. (15)
j=1

In the case the output function F'(-) is set to the sign
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function sgn(-), the overlap m,, represents the direction
cosine between the memory pattern £ and the network
state . We focus on the equilibrium in which only the
v(= aN)-th pattern is retrieved, i.e., my = m, = O(1)
and m,, = O(1/V/N), where p = v.

3. Results
3.1 SCSNA

The internal potential u; of each neuron in the equilib-
rium state is represented by the weighted sum of out-
puts from other neurons. The basis of the SCSNA is in
the systematic splitting of the internal potential into a
signal and a cross-talk noise. Moreover, the cross-talk
noise part consists of two elements. One is an effective
self-coupling term I', which comes from statistical cor-
relations caused by the recurrent connections, the other
obeys the Gaussian distribution with a mean 0 and a
variance 2. The following results are obtained for any
odd output function F(-)

oo d 2
My = /_oo \/%exp <—%> Y(e, 2), (16)

quz _\j;—ﬁ eXp'<~%2) Y(a,2)?, (17)
U= %/: %exp (-?) V2,  (8)
Y(a,2) = F (A@)my +TY (0, 2) + 02), (19)
o> :q/ooo ds%, (20)
r:/o ds%, @n

where Y (c, z) is an effective output function of each
neuron obtained by solving Eq. (19), m,, is the overlap
for the target pattern £ (v = alN) defined in Eq. (15),
and q is the so-called Edwards-Anderson order param-
eter. The susceptibility U measures the sensitivity of
neuron output to external input, and o2 is the noise
variance that obeys the Gaussian distribution. In the
forgetting case in Eq.(12)[3],

2_ 201 L _ _t
== {UZ log (1 —U) + U(l*U)} (22)
r= —632 [% log (1-U)+ 1} (23)

whereas in the conventional correlation learning rule in
Eq.(13) [8]-[10],

0% = ﬁ (24)
r= IOLUU. (25)

According to the SCSNA, the macroscopic description
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of any microscopic state can be represented by the three
order parameters of mq,q, and U. The storage ca-
pacity can be calculated by solving Egs. (16)—(21) self-
consistently as follows. The order parameter equations
are solved numerically. There is a transition at o = .
When the loading rate « is below ac, Egs. (16)—(21)
have a nontrivial solution with m, £ 0. On the other
hand, if « is above a¢, only the trivial solution with
me = 0 exists. The critical value «¢ is the stor-
age capacity. Derivation of the above-mentioned order-
parameter equations of Eqs. (16) through (21) is given
in Appendix.

3.2 Conventional Correlation Learning

Before analyzing the forgetting model, we show the stor-
age capacity of the model with the conventional correla-
tion learning rule in Eq. (13)[10] for comparison. Fig-
ure 2 illustrates the relationship of the storage capacity
a¢ to the nonmonotonicity 1/6 for the conventional
correlation learning rule. As previously mentioned, the
Hopfield model corresponds to 1/6 = 0. 1/0 = 0.5
gives the highest nonmonotonicity because the storage
capacity obtained by the SCSNA in Eq.(13) tends to
be larger than the actual values obtained by computer
simulation of 1/6 > 0.5[10]. Since the susceptibility
U in Eq. (18) is always positive in the Hopfield model
(1/6 = 0), the variance of the cross-talk noise o2 in
Eqgs. (20) or (24) is always larger than aq. In the non-
monotonic model, however, U may be negative in the
retrieval phase. Therefore, the variance of the cross-
talk noise o2 is smaller than the variance in the Hop-
field model. The storage capacity of the nonmonotonic
model monotonically increases with the nonmonotonic-
ity 1/0 in0 £ 1/8 < 0.5.
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Fig. 2 Storage capacity ac and nonmonotonicity 1/ for the
conventional correlation learning rule.
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Fig. 3 Theoretically obtained overlap m. and loading rate o
for forgetting rate values ¢ = 3.0,4.0 and 6.0 on the monotonic
two-state network 1/6 = 0. Experimental results of overlap are
also shown.

3.3 Forgetting Process

Mézard et al. proposed the forgetting process for the
learning rule of Egs.(11) and (12), and analyzed their
model of two-state (1) neurons by the replica the-
ory[3]. The replica theory results coincide with previ-
ously discussed analytical results of the SCSNA. Simi-
larly, the result of the SCSNA from Egs. (16) through
(21) also coincides with the result of Mézard et al., if
we set F(-) = sgn(-). Figure 3 shows the overlap m,
of the retrieved v = aN-th pattern of the monotonic
two-state model, i.e., F(-) = sgn(-), and this implies
that there is an optimal forgetting rate €opt because the
storage capacity of € = 4.0 has the largest value. The
dash-dotted line in Fig. 5 shows the storage capacity ac
of the monotonic two-state network as a function of the
forgetting rate €. As implied in Fig. 3, the storage ca-
pacity o has a maximal value of 0.049 at e = 4.1, and
this is exactly equivalent to the one obtained by Mézard
et al.[3].

Figure 4 shows theoretical results of the overlap my
of the retrieved v = aN-th pattern in the highest non-
monotonic case, i.e., 1/6 = 0.5, and also implies that
there is an optimal forgetting rate Eopt similar to the
monotonic case, even if the network dynamics are non-
monotonic. Because generally F(u) < 1, the overlap is
less than 1 in the nonmonotonic case. To confirm these
theoretical results, numerical simulations were carried
out as shown in Figs.3 and 4. We employed a discrete-
time version of Eq.(2), i.e.,

it + At) = (1 — Ab)z;(t) + ALF (u;()),
N
: i

with At = 0.1. No numerical improvement was seen
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Fig. 4 Theoretically obtained overlap m. and loading rate «
for forgetting rate values e = 2.5,4.0 and 7.0 on the nonmono-
tonic network 1/6 = 0.5. Experimental results of overlap are also
shown.

in further decreasing A¢. Date points representing the
overlap m, are obtained by computer simulation with
N = 500 for 50 trials in the both figures. Error bars
indicate standard deviations. In comparing Figs.3 and
4, one may find that the overlap m, depends on the
loading rate « in different way. The overlap m, de-
creases as the loading rate «v increases in the monotonic
two-state network and increases in the nonmonotonic
case. The reason is as follows: Since the loading rate
corresponds to the sequential number of the memory
pattern, the larger loading rate means that the corre-
sponding memory pattern is stored earlier. The signal
term of the first term in the RHS of Eq.(19) is scaled
as A(a) = exp(—e*a/2). This finding implies that both
the larger £ and « result in a smaller coefficient of the
signal term, and that the nonmonotonicity is effectively
decreased as ¢ and/or « is increased. Thus the net-
work with the larger values of & and « has effectively
weaker nonmonotonicity and a larger overlap value. If
we compare the results of ¢ = 2.5, 4.0 and 7.0, the
overlap m,, increases the most with the largest value of
e. Figure 5 shows the storage capacity a¢ for various
values of the nonmonotonicity 1/6 including the mono-
tonic two-state network as a function of the forgetting
rate . As in the monotonic case, the storage capacity
a¢ has the maximal value O‘C(Eopt) at a certain value
of £5pt depending on the nonmonotonicity.

Figures 6 and 7 show the maximal storage capacity
ac(sopt) and the optimal forgetting rate eqp¢ for var-
ious nonmonotonicity values, ie., 0 < 1/ < 0.5, As
previously mentioned, 1/6 = 0.5 is the maximal amount
of the nonmonotonicity where both analytical and com-
puter simulation results coincide [ 10]. As with the con-
ventional correlation learning rule shown in Fig. 2, the
maximal storage capacity ac(aopt) increases with the
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Fig. 5 Storage capacity a¢ and forgetting rate ¢ for various

values of nonmonotonicity 1/¢ = 0.0,0.25 and 0.5.
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Fig. 6 Maximal storage capacity ac(eopt) for the forgetting
process and nonmonotonicity 1/6.

nonmonotonicity 1/6. On the other hand, the optimal
forgetting rate opt decreases with the nonmonotonicity
1/60. This indicates that the coefficient of the signal part
A(a) of Eq.(19) at a = Q’C(Eopt) tends to be constant
with respect to the variation of the nonmonotonicity.
Mézard et al. discussed a capacity ratio of the stor-
age capacity ac of the conventional model in Eq.(13)
with respect to the maximal storage capacity O‘C(Eopt)
on the forgetting process (a¢/ ac(aopt)). They showed
ac/ ac(sopt) ~ 2.82 for the monotonic two-state net-
work [3]. Akaho[11] discussed the same model con-
cerning the absolute capacity[5],[12], which is an up-
per limit on the number of memory patterns to guarantee
errorless retrieval. The absolute capacity of the conven-
tional correlation learning rule is N/(2log, N) [5],{12],
while the maximal absolute capacity for the forgetting
process is N/(2elog, N) at 5 =1 — (elog, N)/N. Thus

IEICE TRANS. INF. & SYST., VOL. E81-D, NO. 11 NOVEMBER 1998

Optimal forgetting rate

00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1/6
Fig. 7 Optimal forgetting rate €opt and nonmonotonicity 1/6.
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Fig. 8 Capacity ratio ac/ac (Eopt) and nonmonotonicity 1/6.

the capacity ratio concerning the absolute capacity is
e ~ 2.72. This value approximately coincides with one
obtained by Mézard et al. Figure 8 shows the capac-
ity ratio ac/ac(sopt) as a function of the nonmono-
tonicity 1/6, and demonstrates that the capacity ratio
increases with the nonmonotonicity. This means that
the storage capacity ac of the forgetting case is not so
enhanced by introducing the nonmonotonicity as one of
the conventional model. The reason is that the effective
nonmonotonicity at o = ac(sopt), which can be con-
sidered to be A(ac(aopt)) /0, is relatively smaller than

the proper nonmonotonicity 1/86.
4. Conclusion

In this paper, we have investigated the properties of
the associative memory model with the forgetting pro-
cess for the piecewise linear nonmonotonicity by the
SCSNA. When the nonmonotonicity disappears, the
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obtained SCSNA order-parameter equation completely
concurs with the analysis of the monotonic two-state
network by Mézard et al.[3]. The discussed model is
free from the catastrophic deterioration of memory due
to overloading. We have shown the relationship be-
tween the storage capacity and the forgetting rate, and
obtained the optimal forgetting rate, at which is the
storage capacity is maximized. The maximal storage
capacity and the capacity ratio increase with the non-
monotonicity, whereas the optimal forgetting rate de-
creases with it.
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Derivation of the SCSNA: The Forgetting
Process

Appendix:

Expressing the internal potential v; in the equilibrium

1303
state by the overlaps (15), we obtain
N
= Jizs
j#i
_ Z A ( ) £im,, — / dsA(s)zi. (A1)
0

The output z; can be formally expressed as

xz, = F <§A (%) &'my, — /0 dsA(s)a:z)
=F (iA (%) §fm#> ,
(=0

where the function F(-) will be determined later. Here,
we discuss when the v-th pattern £ is retrieved. The
residual overlap m,, = O(1/v/N), (1 # v) is obtained
by using the Taylor expansion

my = NZE“F (ZA( )spmp>

- %Zsrwém <A () U
=1

N
_ ( .
—N(l_ O ZE’” g (A-2)
where
F(S(g)em).
PER
/(#) — ZA< )fpmp ,
pEL
- L im'(u)
- Ni:l b

The sequential number of the retrieved pattern £, i.e. v,
should be scaled with the number of neurons N, that is,
v = aN. We call this « the loading rate. Substituting
Eq. (A-2) into Eq. (A- 1), we get

e A(s)2U _
i = P Mo+ ds— =% + 2,
u; = Ao)éFm /o ST (s)Um z

where we replaced the signal part of the internal poten-
tial:

& — &,

my — Meqy,

and z is the effective noise so that,
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2

co N "
‘Z%ZZ (A)ﬂ_gugﬂ ().
i

Note that z is a summation of uncorrelated random
variables, with < Z >= 0 and < zZ >= ¢2. Thus,

s [ As)
‘4/0 ST AE)E
1L,

If we replace u; — u, £Fm, — Mg, and F(u) — Y, and
denote z = z/o, and since we have discussed the odd
function F'(+), Egs. (16)—(21) are obtained.
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