Journal of the Physical Society of Japan 80 (2011) 034802

FuLL PAPERS

DOI: 10.1143/JPSJ.80.034802

Belief Propagation for Error Correcting Codes and Lossy Compression
Using Multilayer Perceptrons

Kazushi Mmmura*, Florent Cousseau’, and Masato OKADA

2

Graduate School of Information Sciences, Hiroshima City University,
3-4-1 Ohtsuka-Higashi, Asaminami-ku, Hiroshima 731-3194, Japan
' Division of Transdisciplinary Sciences, Graduate School of Frontier Sciences, The University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
2RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

(Received May 12, 2010; accepted January 20, 2011; published online March 10, 2011)

The belief propagation (BP) based algorithm is investigated as a potential decoder for both of error correcting codes
and lossy compression, which are based on non-monotonic tree-like multilayer perceptron encoders. We discuss that
whether the BP can give practical algorithms or not in these schemes. The BP implementations in those kind of fully
connected networks unfortunately shows strong limitation, while the theoretical results seems a bit promising. Instead,
it reveals it might have a rich and complex structure of the solution space via the BP-based algorithms.
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1. Introduction

In today’s society, information processing is part of our
everyday life. As the pool of data available to us grows
exponentially within the years, it is vital to be able to store,
recover, and transmit those data in an efficient way. With the
birth of information theory subsequently to the pioneering
work of Shannon," methods to efficiently process informa-
tion start to become widely studied.

It has been shown that it is possible to ensure error free
transmission using a non zero code rate up to a maximum
value which cannot be exceeded without resulting in an
inevitable loss of information. This upper bound is known as
the Shannon bound. The design of efficient and practical
codes is still one of the main topics of information theory.
For example, the Sourlas’s code” asymptotically attains
the Shannon bound, which is for channels with very small
capacity. A interesting feature of Sourlas’s paper is that
it showed the possibility to use methods from statistical
physics to investigate error correcting code schemes.
Following this paper, the tools of statistical mechanics have
been successfully applied in a wide range of problems of
information theory in recent years. For instance in the field
of error correcting codes itself,>® as well as spreading
codes.” !V

On the other hand, lossy compression, which is the
counterpart of lossless compression which seeks error
free compression, has been also discussed.'? Its task is to
compress a given message allowing a certain amount of
distortion between the original message and the recon-
structed messages after compression. An efficient lossy
compression scheme should be able to keep the compression
rate as large as possible while keeping the distortion as small
as possible. This is a typical trade-off optimization problem
between the desired fidelity criterion and the compression
rate. As in ref. 1, Shannon derived an upper bound which
gives the optimal achievable compression rate for a fixed
distortion, i.e., a fixed fidelity criterion. Recently, statistical
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mechanical techniques were applied to these kind of
problems with interesting results.!>~!®

This paper focuses on error correcting code and lossy
compression where non-monotonic tree-like committee
machines or parity machines are used as encoder and
decoder respectively (for a thorough review on these kind of
neural networks, see ref. 19). It has been analytically shown
that in both error correcting code and lossy compression
cases, this kind of schemes can reach the Shannon bound
under some specific conditions.>!® While these results are
interesting from a theoretical point of view, the complexity
of a formal encoder/decoder prevents these schemes
from being practical. A formal way of encoding/decoding
information would require an amount of time which grows
exponentially with the size of the original message. One
possible solution is to use the popular belief propagation
(BP) algorithm in order to approximate the marginalized
posterior probabilities of the appropriate Boltzmann factor
which describes the behavior of the scheme.

The BP algorithm is proved to be exact and is guaranteed
to converge only for probability distribution which can be
represented into a factor graph with no loop, i.e., a tree. This
is not the case for schemes based on the above kind of neural
networks as they are densely connected and necessarily
contains loops, i.e., their corresponding factor graph is not a
tree.

Nonetheless, the BP is known to give excellent approx-
imating performance in the case of sparsely connected graph
and have been successfully applied in decoding low density
parity check codes (LDPC) for example. On the other hand,
it is known that the approximation given by the BP in
the case of more densely connected graphs is sometimes
more mitigated. Several problems of sub-optimal solutions
or simply convergence failures arises.

However, despite those issues, it is considered that
investigating the BP algorithm on such kind of densely
connected schemes is still interesting from a statistical
physical point of view and provides precious insight into the
solution space structure of such kind of systems. So far, only
the BP-based encoders of lossy compression, based on both
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of the low-density generator-matrix (LDGM) code'® and the
simple perceptron,”” have been discussed. Both BP-based
encoders for lossy compression based on the multilayer
perceptron (MLP) and BP-based decoders for error correct-
ing codes based on the MLP have never investigated yet. In
this paper, we discuss that whether the BP can give practical
algorithms or not in both error correcting codes and lossy
compression based on the MLP.

The paper is organized as follows. Section 2 introduces
non-monotonic tree-like multilayer perceptron networks
used throughout the paper. Section 3 exposes the frame-
works of error correcting code and lossy compression.
Section 4 introduces the belief propagation algorithm and
section 5 states the results obtained by the algorithm in both
schemes. Section 6 is devoted to discussion and conclusion.

2. Structure of Multilayer Perceptrons

In this section we introduce the kind of network we will
use throughout the paper. Tree like perceptrons were already
studied thoroughly by the machine learning community over
the years. It is known that a feed-forward network with a
single hidden layer made of sufficiently many units is able to
implement any Boolean function between input layer and
output.

The choice to use perceptron like networks for problem
of information theory was already proposed by Hosaka
et al.'> They used a simple perceptron to investigate a lossy
compression scheme. One of the most interesting feature of
their work was the use of the following non-monotonic
transfer function for the perceptron,

1, lx| <k, 1

fk(x)—{_l’ o )
where k is a real parameter, controlling the bias of the output
sequence. This choice of a non-monotonic transfer function
was inspired by previous well known results within the
machine learning community such as the improved storage
capacity achieved by non-monotonic networks. They choose
this modified version of a reversed wedge perceptron (see
ref. 19 for a description of those networks) for several
reasons. The first one was motivated by the need to be able
to control the bias of the output sequence easily (which is
achieved by tuning the parameter k). The second reason was
motivated by the claim that a zero Edwards—Anderson (EA)
order parameter is needed, thus reflecting optimal compres-
sion within the codeword space (meaning that codewords are
uncorrelated in the codeword space). The use of eq. (1)
ensures mirror symmetry [fi(x) = fi(—x)] and is likely to
give rise to a zero EA order parameter (see ref. 15).

Subsequently, non-monotonic tree-like perceptrons were
successfully used in a lossy compression scheme and error
correcting code scheme using the same kind of non-
monotonic transfer function.*'® This paper uses the same
networks, which are all derived from the general architecture
given by Fig. 1.

In each of these networks, the coupling vector s is split
into s = (s1,...,S,,...,5¢) where each s; = (s},...,s!
sfv/ Kyisa N / K-dimensional binary vector of Ising variables
(i.e., =1 elements). In the same way, the input vector x* =

Sy,

Fig. 1. General architecture of the treelike multilayer perceptron with N
input units and K hidden units.

Ising variables. The output of the network is then given by
the scalar y* which is also £1. The sgn function denotes the
sign function taking 1 for x > 0 and —1 for x < 0. We use
the Ising expression (bipolar expression) {1, —1, x} instead
of the Boolean expression {0, 1,4 (mod2)} to simplify
calculation. Consequently, the Boolean 0 is mapped onto 1
in the Ising framework while the Boolean 1 is mapped
to —1. This mapping can be used without any loss of
generality. We investigate three different networks which
are given by the followings:

(I) Multilayer parity tree with non-monotonic hidden units

(PTH).
K K
e =[x ([st ~x§‘>- )
=1

(IT) Multilayer committee tree with non-monotonic hid-
den units (CTH).

K K p
o) =sn( Y fi| st | ). (3)
=1

Note that in this case, if the number of hidden units K is
even, then there is a possibility to get O for the argument of
the sign function. We avoid this uncertainty by considering
only an odd number of hidden units for the committee tree
with non-monotonic hidden units in the sequel.

(III) Multilayer committee tree with a non-monotonic
output unit (CTO).

0 RS K in
Y =fi X E sgn st - X . (€]
=1

3. Frameworks

3.1 Error correcting codes using multilayer perceptrons
In this section we show how non-monotonic tree-like
perceptron can be used in an error correcting code scheme.
In a general scheme, an original message s° € {—1,1}" of
size N is encoded into a codeword y, € {—1, 1M of size M
by some encoding device. The aim of this stage is too add
redundancy into the original data. Therefore, we necessarily
have M > N. Based on this redundancy, a proper decoder
device should be able to recover the original data even if it
were corrupted by some noise in the transmission channel.

Xt xt L xk), we(l,..., M) is also made of N/K- The quantity R = N/M is called the code rate and evaluates

1 1 K q y

dimensional binary vector x;' = (x{},...,Xj,..., Xy k) of the trade-off between redundancy and codeword size. The
034802-2 ©?2011 The Physical Society of Japan
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Fig. 2. The binary asymmetric channel (BAC).
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Fig. 3. Layout of the error correcting code scheme.

codeword y, is then fed into a channel where the bits are
subject to some noise. The received corrupted message
y e {—1, 1}™ (which is also M dimensional) is then decoded
using its redundancy to infer the original N dimensional
message s%. In other words, in a Bayesian framework, one
try to maximize the following posterior probability,

P(s | y) o< P(y | ) P(s). &)

As data transmission is costly, generally one wants to be able
to ensure error free transmission while transmitting the less
possible bits. In other words, one wants to ensure error free
transmission keeping the code rate as close as possible to the
Shannon bound.

In this paper we assume that the original message s° is
uniformly distributed on {—1,1}" and that all the bits are
independently generated so that we have

1
P(s®) = W (6)

The channel considered is the binary asymmetric channel
(BAC) where each bit is flipped independently of the others
with asymmetric probabilities. If the original bit fed into the
channel is 1, then it is flipped with probability r. Conversely,
if the original bit is —1, it is flipped with probability p.
Figure 2 shows the BAC properties. The binary symmetric
channel (BSC) corresponds to the particular case where
r=p.

Finally, the corrupted message y is received at the output
of the channel. The goal is then to find back s° using y. The
state of the estimated message is denoted by the vector s.
The general schematic outline of the scheme is shown in
Fig. 3. From Fig. 2 we can easily derived the following
conditional probability,

P(v* - K w
(y Iy)— + 5 [ =r=pyy +(=pl.
where we make use of the notations y, = ( y(l),..., yg s
yoh, y=', .. 9", ..., yM). Since we assume that the
bits are flipped independently, we deduce P(y |y, =
nyzl P(y* | yy). To encode the original message s¥ into
a codeword y,, we make use of the non-monotonic tree-
like parity machine or committee machine neural networks
already introduced. We prepare a set of M input vectors
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&', ....x* ...,xM) which are drawn independently and
uniformly on { 1,1}. This w111 play the role of the
codebook. The original message s° is used as the coupling
vector of the network. Then, each input vector x* is fed
sequentially into the network generating a corresponding
scalar y; at the output of the network finally resulting in a
M-dimensional vector y,. This gives us the codeword to feed
into the channel.

The use of random input vectors is known to maximize
the storage capacity of perceptron’s network and since each
yh is computed using the whole set of original bits s°,
redundancy is added into the codeword. This makes such
kind of scheme promising for error correcting task. A formal
decoder should be able to decode the received corrupted
message y by maximizing the posterior probability p(s | y),
that is

§ = argmax p(s |). (7

se{—-1,1}"

To keep notation as general as possible, as long as
explicit use of the encoder is not necessary in computa-
tions, we will denote the transformation perform on the
vector s by the respective tree-like perceptrons using the
notation F(/K/Ns;-x}'). Here F, takes a different
expression for the three different types of network and this
notation means all encoders depends on a real threshold
parameter k.

Since the relation between an arbitrary message s and the
codeword fed into the channel is deterministic, for any s, we
can write

Mo P
Pylo=]l13+5[0-r-p

n=1

X ]—'k<\/§sl -xﬁ‘) +(r—p):|}.

We finally get the explicit expression of the joint probability

of the model as
"
= [(1 —r=p)

P = LT+
PE=av 2

x]-'k<\/§sl-xf)+(r—p):“. ®)

The typical performance of this scheme was already
studied using the Replica Method (RM)® and it was shown
that each of the three proposed network can reach the
optimal Shannon bound at the infinite codeword length limit
(when N — oo and M — oo while the code rate R is kept
finite) under some specific condition.

The PTH and the CTH were shown to reach the Shannon
bound for any number of hidden units K (any odd number
of hidden units in the case of the CTH) if the threshold
parameter k of the non-monotonic transfer function is
properly tuned. The CTO was shown to reach the Shannon
bound when its number of hidden units K becomes infinite
and with a properly tuned threshold parameter k only.

3.2 Lossy compression using multilayer perceptrons

In this section we introduce the framework of lossy data
compression’’ and how non-monotonic tree-like percep-
trons can be used for this purpose.

©?2011 The Physical Society of Japan
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Fig. 4. Rate distortion encoder and decoder.

Let y be a discrete random variable defined on a source
alphabet ). An original source message is composed of M
random variables, y = (y',...,y¥) € Y™, and compressed
into a shorter expression. The encoder compresses the
original message y into a codeword s, using the transforma-
tion s = F(y) € S¥, where N < M. The decoder maps
this codeword s onto the decoded message ¥, using the
transformation § = G(s) € Y”. The encoding/decoding
scheme can be represented as in Fig. 4. In this case, the
code rate is defined by R = N/M. A distortion function d is
defined as a mapping d: Y X Y — R*. For each possible
pair of (y, ), it associates a positive real number. In most of
the cases, the reproduction alphabet Y is the same as the
alphabet ) on which the original message y is defined.

Hereafter, we set j/ =), and we use the Hamming
distortion as the distortion function of the scheme. This
distortion function is given by

0’ y= ﬁ s
d(y,y) = 9
(.9 {1’ N ©)
so that the quantity d(y,y) = 2;7:1 d(y*,y*) measures how
far the decoded message y is from the original message y.
In other words, it records the error made on the original
message during the encoding/decoding process. The prob-
ability of error distortion can be written E[d(y,y)] =
Ply # 3] where E represents the expectation. Therefore,
the distortion associated with the code is defined as D =
E[(1/M)d(y,y)], where the expectation is taken with respect
to the probability distribution P[y,y]. D corresponds to
the average error per variable . Now we defined a rate
distortion pair (R, D) and we said that this pair is achievable
if there exist a coding/decoding scheme such that when
M — oo and N — oo (note that the rate R is kept finite), we
have E[(1/M)d(y,y)] < D. In other words, a rate distortion
pair (R, D) is said to be achievable if there exist a pair (F, G)
such that E[(1/M)d(y,y)] < D in the limit M — oo and
N — oo.

The optimal compression performance that can be
obtained in the framework of lossy compression is given
by the so-called rate distortion function R(D) which gives
the best achievable code rate R as a function of D (Shannon
bound for lossy compression). However, despite the fact that
the best achievable performance is known, as in the error
correcting code case, no clues are given about how to
construct such an optimal compression scheme.

In this paper we assume that the original message
y=('...,y*...,yM) is generated independently by an
identically biased binary source, so that we can easily write
the corresponding probability distribution,

P[y"1=ps(y* — D+ (1 —p)s(y* + 1),

where p corresponds to the bias parameter. The encoder is
simply defined as follows:

(10)

Next, to decode the compressed message s we make use
of the already introduced tree-like perceptrons. As in the
error correcting code scheme, we prepare a set of M input
vectors (x!,...,x*,...,xM) which are drawn independently
and uniformly on {—1,1}. This will play the role of the
codebook. The compressed message s is used as the coupling
vector of the network. Then, each input vector x* is fed
sequentially into the network generating a corresponding
scalar * at the output of the network finally resulting in a
M-dimensional vector y. This gives us the reconstructed
message which should satisfies E[(1/M)d(y,y)] < D where
D is the desired fidelity criterion which measure the amount
of error between the reconstructed message ¥ and the
original message y.

To keep notation as general as possible, as long as explicit
use of the decoder is not necessary in computations, we will
again denote the transformation perform on the vector s
by the respective tree-like perceptrons using the notation
FuJ/K/Ns; - x}").

The encoding phase can be viewed as a classical
perceptron learning problem, where one tries to find the
weight vector s which minimizes the distortion function
d(y,y) for the original message y and the random input
vector x. The vector s which achieve this minimum gives
us the codeword to be send to the decoder. Therefore, in
the case of a lossless compression scheme (i.e., D = 0),
evaluating the rate distortion property of the present scheme
is equivalent to finding the number of couplings s which
satisfies the input/output relation x* — y*. In other words,
this is equivalent to the calculation of the storage capacity of
the network.?>%3)

The typical performance of this scheme was already
studied using the Replica Method (RM)'® and it was shown
that each of the three proposed network can reach the
optimal Shannon bound at the infinite codeword length limit
(when N — oo and M — oo while the code rate R is kept
finite) under some specific condition.

The PTH and the CTH were shown to reach the Shannon
bound for any number of hidden units K (any odd number
of hidden units in the case of the CTH) if the threshold
parameter k of the non-monotonic transfer function is
properly tuned. The CTO was shown to reach the Shannon
bound when its number of hidden units K becomes infinite
and with a properly tuned threshold parameter k only.

4. Belief-Propagation-Based Algorithms

In this section we briefly introduce the BP algorithm
and how it can be used to infer an approximation of the
marginalized posterior probabilities. The BP or sum-product
algorithm is originally designed to compute exact margin-
alization on a factor graph which is a tree. However it is
known to give very good performance even for non tree
factor graph in various cases. For a formal introduction of
the BP algorithm, see refs. 24 and 25.

So far, the BP algorithm was already applied by Hosaka
et al. in the case of lossy compression using the simple
perceptron,” but not in the case of the MLP. We follow the
footsteps of their work to investigate both of the BP decoder
for error correcting code and the BP encoder for lossy

F(y) = argmin d(y, G(§)). (11)  compression, which are based on multilayer perceptrons. It
sel-L1y" should be noted that we can discuss a basic BP algorithm for
034802-4 ©?2011 The Physical Society of Japan
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Fig. 5. Factor graph of the Boltzmann distribution.

error correcting codes and lossy compression at a time. For the
BP to be used, we need to have a factorizable probability
distribution. Based on the statistical mechanical framework
used in refs. 6 and 18, the posterior probability of each case
(either in the error correcting code scheme and lossy compres-
sion scheme) can be represented by a Boltzmann distribution

exp[—BH(s,y, {x})]
Z(y, {x}; B)

where H(s,y,{x}) denotes the relevant Hamiltonian and
Z(y, {x}; B) the relevant partition function. The notation {x}
denotes the fact that the random vectors x* are already fixed
and known, which are random quenched variables.

In order to use the BP algorithm, this Boltzmann
distribution can be factorized such that the Boltzmann factor
can be decomposed into

d [k
exp[—BH(s,y, D1 = [ | Gk,u({ Al ~xf‘}), 13)
n=1

where the expression of the function Gy, depends on the
scheme considered. In Appendix A, the derivaton of the
BP-based decoders for error correcting codes are given. In
Appendix B, the BP-based encoders for lossy compression
are derived. Following from this assumption, we can write
down the factor graph representation of the Boltzmann
distribution as a bipartite graph (Fig. 5).

In the BP, it is assumed that the secondary contribution of
a single variable s/ or y* is small and must be neglected.
Under this assumption, the factor graph shown in Fig. 5 is
regarded as having a tree-like architecture. Now let us write
down the set of messages flowing from the source sequence
to the codeword and vice versa. We then have the following
equations:

. K
ﬁuil(s;) = Z Gk»# ({\/;S[ x?})

p(s |y {x}; B) = ; (12)

s\{s7}
N/K , K N/K ,
x (1"[ OS] )) (]‘[ I1 p;,-,,(s;)), (14)
i'#i I'#l i'=1
M
P (s) = C,uzgf,(S})( I1 bi,,-,(#)) (15)
WH#W

where C,; denotes the relevant normalization constant
and gj,(s)) denotes the prior. pf;(s;) denotes the message
received by the random variable s; from the source sequence
bit y* at time step 7. Pl (s}) denotes the message sent by the
random variable sj to the source sequence bit y* at time step

034802-5

t+ 1. At time 7 + 1, the pseudo posterior marginals is given
as

P Ly e B = p s |y, (x): B)
$\{si}

M
~ @qi,(sf)(]‘[ ﬁ;i,(s;'>), (16)
u=1

where C;; denotes the relevant normalization constant.
We obtain the BP-based algorithm as follows:

M
K 1 g
1 il
mif = tanh|;§=1 ﬁxﬁ;q)jwl + mfl(’ﬁlld + Eln el

A7)
where we have inserted back the term depending on the
prior and we put p'(si | y, {x}; B) = (1/2)(1 + m!;s}). Detail
of calculation and definitions both <I>§Wl and Qﬁ;d are
available in Appendix A. The MPM estimator at time step
t is given by

(18)
This BP algorithm requires O(N?) operations for each step.

s; = sgn(m)).

5. Empirical Performance

5.1 Error correcting code case

In this section we show the results we obtain by using the
BP algorithm as a decoder of the scheme.

In the case of error correcting codes, the Edwards—
Anderson order parameter g is ¢ = 1 in the ferromagnetic
phase, implying that |(s;)]> = 1, where (---) denotes the
average with respect to y and x. This means that a simple
uniform prior can be used efficiently and there is no
uncertainty about the sign of si. However, as it will be
discussed further with the lossy compression case, we
introduce a more refine prior, so-called an inertia term, of the
following form

q',(s}) = expls tanh ™' (ym!))], (19)

where 0 < y < 1 denotes an amplitude of the inertia term.
Note that y is set by trial and error. This method was already
successfully applied by Murayama'® for a lossy compres-
sion scheme. In the sequel, if nothing is explicitly precised
about y, then it means that we used y = 0, corresponding to
the simple uniform prior.

The general procedure is as follows. In each case, the
threshold parameter k is set to the optimal theoretical value.
First, an original message s is generated from the uniform
distribution. Then the original message is turned into a
codeword y, using the relevant network. The codeword is
then fed into the binary asymmetric channel where it is
corrupted by noise according to the parameters p and r. The
decoder receives the corrupted codeword y at the output of
the channel. The BP is finally used to infer back the original
message s” using the corrupted codeword y. The BP-based
decoders are shown in Appendix A.

We conducted two types of simulations. In the first one,
the number of hidden units K, the size of the original
message N, and the parameters (p,r) of the BAC are kept
constant. The changing parameter is the size of the codeword
M which results in different values for the code rate R =
N/M. For each value of R tested, we perform 100 runs. For
each run, we perform 100 BP iterations and the resulted

©?2011 The Physical Society of Japan
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Fig. 6. Empirical performance of the BP-based decoder for error
correcting codes using the PTH with K =1 (solid) and K = 3 (dashed).
We set p=0.1, r = 0.2, and y = 0 (set by trial and error) and used N =
1000 (for K = 1) and N = 999 (for K = 3). The vertical line represents the
Shannon bound.

estimated message s is compared with the original one
s using the overlap value (1/N)s-s°. The code rate is
plotted against the mean value of the overlap. The author are
well aware that in general, information theorists plot the
performance of an error correcting code scheme using error
probability plot in logarithmic scale. However, the present
BP calculations still requires a computational cost of order
O(N?) which prevent such drawing to be feasible. On top of
that, the author believes that the main interest of the present
schemes at the present state of research is from a theoretical
point of view rather than a practical point of view. The
performance plot intends to give an general idea about
the typical performance obtained using the BP with these
schemes but does not aim at discussing possible practical
implementation of these schemes. We believe the perfor-
mance exhibited by these schemes at the present time to be
too limited to be worth such discussion.

In the second type of experiment, we try to shed light on
the structure of the solution space. For this purpose, we fix
the value of K, N, M,p,r and generate an original message
s9. We let run the BP algorithm and get a estimated message
s after 100 iterations. Then we keep the same original
message and let run the BP again but with different initial
values. After 100 iterations we get another estimated
message s’. We perform the same procedure 30 times and
we calculate the average overlap (1/N)s - s’ between all the
obtained estimated messages. Next we generate a new
original message s and do the same procedure for 50
different original messages. We finally plot the obtained
overlap using histograms, thus reflecting the distribution of
the solution space.

5.1.1 Parity tree with non-monotonic hidden units (PTH)

We show the results obtained for the PTH with K =1
and 3 hidden units in Fig. 6. The vertical line represents
the Shannon bound, that is the theoretical limit for
which decoding is still successful (i.e., overlap is 1). The
average overlap for 100 trials is plotted. While the Shannon
bound gives a theoretical optimal code rate of R =~ 0.4,
in this case for K = 1, the performance of the BP starts
to deteriorates rapidly for R > 0.25. This shows limitation
of the BP performance. We tested several configuration
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with different value for p and r (BSC case and Z channel
case), and the general tendency is always the same. Far
from the Shannon bound, the performance deteriorates
rapidly.

Next the same experiment with K = 3 hidden units
shows that the BP fails completely to decode the corrupted
codeword. The average overlap is 0 even for low value of R.
We always got the same results for any value of p and r. In
fact, for any K > 1, it seems that the BP always fails to
converge to any relevant solution. This result is surprising
and might indicates that the number of suboptimal states is
so important that this prevent the BP to work.

Then we try to investigate the structure of the solution
space. We plot the histograms of the overlap of the solutions
obtained using the BP (when K = 1) in Fig. 7(a). In this
case, we see that the BP converges to two different solutions
with opposite sign which corresponds to #s°. This is normal
and comes from the mirror symmetry of the function f;. In
this case the solution space is simple, with two dominant
attractor given by s” and —s°.

Then we perform the same experiment but with K =3
and N = 102. Results are plotted in Fig. 7(b). We obtain a
Gaussian like distribution centered on 0. This means that the
solution given by the BP are almost uncorrelated between
each others. They do not correspond to any relevant solution
and the empirical overlap is almost 0. We then conduct the
same experiment keeping the code rate unchanged but for
an original message of 1000 bits. Results are shown in
Fig. 7(c). The distribution becomes sharper, centered on 0,
meaning that the solutions given by the BP are completely
uncorrelated. The number of suboptimal states becomes very
large and the BP completely fails to converge to a relevant
solution.

To conclude the case of the PTH, we can say that for
K =1, the BP converges but with performance far from
being Shannon optimal. For K > 1, the BP completely fails.
This is probably due to a rise of suboptimal states when
using more than 1 hidden unit.

5.1.2  Committee tree with non-monotonic hidden units
(CTH)

We show the results obtained for the CTH with K =3
hidden units in Fig. 8(a). We do not show the result for
K =1 because in this case, the CTH is equivalent to the
PTH. The vertical line represents the Shannon bound. The
average overlap for 100 trials is plotted.

In this case it is interesting to note that for y = 0 and
R < 0.15, the BP fails to properly recover the original
message but still seems to converge to some meaningful
state. The average overlap is around 0.75 but never reaches
1. This is probably due to local suboptimal attractors in the
solution space. Adding a perturbation by inserting a non zero
inertia term seems to be a good way to escape those
suboptimal states and the best performance are obtained for
y around 0.45. However, for R < 0.15 whatever the value y
takes the performance quickly deteriorates. So the perfor-
mance are very far from being optimal and suggest that the
bigger the code rate is, the larger the number of suboptimal
states are.

We then conduct the exact same experiment but for
K = 5. The results are shown in Fig. 8(b) and are almost
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Fig. 7. Overlap of the solutions given by the BP-based decoder for error
correcting codes using the PTH with R =0.25,p = 0.1, r =0.2 and y = 0.
(a) K =1 and N = 1000. The empirical overlap with the original message
is 0.97. (b) K =3 and N = 102. The empirical overlap with the original
message is 0.08. (b) K = 3 and N = 1002. The empirical overlap with the
original message is 0.03.

identical to the results obtain for K = 3. We then make a
comparison of the best performance obtained using the CTH.
Results are shows in Fig. 8(c).

The best performance are obtain for K = 1. Increasing the
number of hidden units clearly yields poorer performance.
This is an interesting phenomenon and the only explanation
is that the number of hidden units have a critical influence
and the solution space structure. While theoretically any
number of hidden units should be able to yield optimal
performance, the BP clearly gives bad results for K > 1.Ina
similar way as the study we have introduced in the first part
of this paper. It is very likely that the intrinsic structure of
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Fig. 8. Empirical performance of the BP-based decoder for error
correcting codes using the CTH with p = 0.1 and r = 0.2. The vertical
line represents the Shannon bound. (a) K = 3 and N = 999. The dashed line
is for y = 0, the dotted line is for y = 0.45. (b) K =5 and N = 1000. The
dashed line is for y = 0, the dotted line is for y = 0.45. (¢) K = 1 (solid),
K =3 (dashed) and K =5 (dotted) hidden units. We set N = 1000 for
K=1,5and N =999 for K = 3. We chose y =0 for K =1 and y = 0.45
for K = 3,5, which are set by trial and error.

MLPs is at the origin of this ill behavior. The number of
hidden units seems to play a critical role in the organization
of the solution space, and probably give rise to some
complex geometrical features.

Then we try to investigate the structure of the solution
space. First, we plot the histograms of the overlap of the
solutions obtained using the BP with K =3, N = 999, and
y =0 in Fig. 9(a). Then we plot the histograms of the
overlap of the solutions obtained using the BP with K = 3,
N =999, and y = 0.45 in Fig. 9(b).
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Fig. 9. Overlap of the solutions given by the BP-based decoder for error
correcting codes using the CTH with K =3, N =999, M = 6660, R =
0.15, y=0, p=0.1, and r = 0.2. (a) y = 0. The empirical overlap with
the original message is 0.74. (b) y = 0.45. The empirical overlap with the
original message is 0.99.

For y =0, we obtain seven peaks. Two tall peaks at
+1/3, one peak at 0, and four small peaks at £2/3 and +1.
The peaks located at 1 and +1/3 corresponds to successful
decoding and reflect the possible combination of decoded
messages when K = 3. Indeed, because of the mirror
symmetry in the CTH network, any combination of +s?
gives the same output. We therefore have a inherent
indetermination on the original message, which can be
easily removed by adding some simple header to the
codeword.

The two small peaks around £2/3 corresponds to a partial
success in decoding. Indeed, further investigation showed
that those peaks correspond to codewords where two of the
three s? vectors have been successfully retrieved but the last
vector was not. This means that the BP remained trapped in
some local attractor, which probably depends on the initial
values used by the BP. The interesting fact is that it affects
only partially the BP performance in this case, showing that
for the CTH the BP dynamics of each s; is independent to the
others to some extent. Finally, the peak around O reflect a
completely unsuccessful decoding. This explains the average
overlap found of 0.74.

In the K=3 system for a given original message 50

eight messages {(sl,sz, ) (sl,sz, —s) (sl, —s2, ) (sl,
sg, s3) (— sl, 9, 59, (=59, 83, —s9), (—s9, —s9, s9),

(—sl, s2, —s3)} = S(so) which mcludes the original mes-
sage 0 = (sl,sz,s3), are mapped into a same codeword. So
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Fig. 10. Empirical performance of the BP-based decoder for error
correcting codes using the CTO with K = 2 (solid), K = 3 (dashed), and
K =5 (dotted). We set p =0.1, r = 0.2, and y = 0 (set by trial and error)
and used N = 1000 (for K =2 and 5), N = 999 (for K = 3). The vertical
line represents the Shannon bound.

an additional K bit information is necessary to specify the
original message from the set S(s). For instance, it is one
of the additional information to add 1 to each block [ as
sl — (1, sl) to specify the original message (the length of
this information is negligible than the length of the original
message). If the BP decoder correctly estimates the original
message s°, the estimated message is identical to one of the
element of the set S(s°) with equiprobability. Therefore,
when the BP decoder estimates correctly, the histgram
exhibits only four peaks located at &1 (probability 1/8) and
+1/3 (probability 3/8).

The case where y = 0.45 on the other hand, exhibits only
four peaks located at =1 and =£1/3. Therefore this means
that decoding is always successful in this case as confirmed
by the average overlap of 0.99. This result shows that using
a non-zero inertia term can be an efficient way of avoiding
sub-optimal states by adding a small perturbation to the BP
dynamics.

To conclude for the CTH, it is very clear that using a
number of hidden unit greater than 1 is at the origin of some
structural changes of the solution space, which provokes a
dramatic performance drop. For K = 1, successful decoding
is ensured until R = 0.25 while for K = 3, successful
decoding is ensured until R = 0.15 only. However, between
K =3 and K=35, we observe no substantial change. It
seems that as R increases, the suboptimal states’ basin of
attraction quickly becomes very large compared to the
optimal solution one. The influence of the number of
hidden units on the solution space geometry remains to be
investigated in a future work.

5.1.3  Committee tree with a non-monotonic output unit
(CTO)

We show the results obtained for the CTO with K = 2, 3,
and 5 hidden units in Fig. 10. We do not show the result
for K =1 because the CTO cannot be defined in this
case. The vertical line represents the Shannon bound. The
average overlap for 100 trials is plotted. For K = 2 the BP
successfully decodes the corrupted codeword until R = 0.17
only and beyond this value the performance gradually
decreases. Compared to the PTH/CTH with K = 1, the CTO
performance are poorer. However, this is not very surprising
because as mentioned during the analytical study of the CTO
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Fig. 11. Overlap of the solutions given by the BP-based decoder for error

correcting codes using the CTO with K =2, N = 1000, M = 4000, R =
0.25,y=0,p=0.1,and r = 0.2. (a) K =2 and N = 1000. The empirical
overlap with the original message is 0.76. (b) K =3 and N = 999. The
empirical overlap with the original message is 0.63.

case, the CTO is expected to reach the Shannon bound for
an infinite number of hidden units only. The fact that we
get suboptimal performance for finite K is therefore not
surprising. For K = 3, the average performance is better and
decoding is successful until R = 0.2. In this case, it is worth
using an extra unit. However, for K = 5, the performance
deteriorates and we get poorer performance than K = 1.
Nonetheless, the overall performance is still better than the
CTH with the same number of hidden units.

Then we try to investigate the structure of the solution
space. We plot the histograms of the overlap of the solutions
obtained using the BP with K =2 and N = 1000 in
Fig. 11(a). We obtain three sharp peaks at =1 and O and
two small peaks around =+2/3. The three sharp peaks
correspond to successful decoding. As in the CTH case,
their positions correspond to the possible combination of
+s?. However, the other two small peaks corresponds to
suboptimal states (the average overlap is 0.76) and it is
unclear what the value £2/3 denotes. It might corresponds
to some particular local attractor which should be investi-
gated in the future.

Next we plot the histograms of the overlap of the solu-
tions obtained using the BP with K =3 and N =999 in
Fig. 11(b). For K = 3, we obtain two sharp peaks at =1 and
a rather flat distribution connecting them (with a small
concentration around 0). The two sharp peaks correspond
to successful decoding, while the rest of the distribution
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indicates suboptimal states. However, here there is no
particular suboptimal states as in the case when K = 2. This
particularity is interesting and remains to be investigated.

To conclude the case of the CTO, we can say that the BP
reaches optimal performance for K = 3 but decoding is still
far from being Shannon optimal. However, as the analytical
study already mentioned, the CTO is expected to yield
Shannon performance when using an infinite number of
hidden units so it is a little bit hard to explain the results of
this section. Nevertheless, one may expect the performance
to get better and better a K increases but this is not the
case as denoted by the case when K = 5. As for the other
networks, it is very likely that the solution space exhibits
strange geometrical features for K > 1 (explaining the rise
of suboptimal states), preventing the BP to converge
properly for large values of K.

5.2 Lossy compression case

In this section we show the results we obtained by using
the BP algorithm as an encoder of the scheme.

In the case of lossy compression, the Edwards—Anderson
parameter ¢ vanishes as discussed in the refs. 15 and 18,
implying that [(s))]> = 0 (where (---) denotes the average
with respect to y and x). This means that it is not possible
to determine the most probable sign of si. To avoid this
uncertainty we again introduce a particular prior of the form

q(sp) = expls; tanh™" (ym;)], (20)

where 0 < y < 1 denotes an amplitude of the inertia term.
Note that y is set by trial and error. This method was already
successfully applied by Murayama.'¥

The general procedure is as follows (in each case, the
threshold parameter k is set to the optimal theoretical value,
see ref. 18). First, an original message y is generated from
the distribution (10). Then the original message is turned
into a codeword s using the BP-based algorithms which
are shown in Appendix B. The codeword is subsequently
decoded into y wusing the proper tree-like multilayer
perceptron decoder network. The distortion between the
decoded message y and the original message y is then
computed.

We conducted two types of simulations. In the first one,
the number of hidden units K, the size of the codeword N,
and the bias parameters p of the distribution (10) are kept
constant. The changing parameter is the size of the original
message M which results in different values for the code rate
R = N/M. For each value of R tested, we perform 100 runs.
For each run, we perform 35 BP iterations and the resulted
estimated codeword s is then decoded into y. The distortion
between y and y is then computed. The code rate is plotted
against the mean value of the distortion.

The second type of experiment is exactly the same as in
the error correcting case. We fix the value of K, N, M, p and
generate an original message y. We let run the BP algorithm
and get a codeword s after 35 iterations. Then we keep the
same original message and let run the BP again but with
different initial values. After 35 iterations we get another
codeword s’. We perform the same procedure 30 times
and we calculate the average overlap (1/N)s - s’ between all
the obtained codewords. Next we generate a new original
message y and do the same procedure for 50 different
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Fig. 12. Empirical performance of the BP-based encoder for lossy
compression using the PTH with K = 1 and K = 3 for unbiased messages
(p = 0.5, on the top of the figure) and biased message (p = 0.8, on the
bottom). Dashed lines are for K = 1 and dotted lines are for K = 3. We
used N = 1000 for K=1, and N =999 for K = 3. The inertia term
y = 0.45 was set by trial and error. The solid lines give the Shannon bound.
The top one is for p = 0.5, the bottom one is for p = 0.8.

original messages. We finally plot the obtained average
overlap using histograms, thus reflecting the distribution of
the codeword space.

5.2.1 Parity tree with non-monotonic hidden units (PTH)

We show the results obtained for the PTH with K = 1 and
3 hidden units for unbiased message (i.e., p = 0.5) an biased
message with p = 0.8 in Fig. 12. The solid line represents
the rate distortion function corresponding to the Shannon
bound, that is the lowest achievable distortion for a given
code rate R. The average distortion for 100 trials is plotted.

For K =1, the results are quite far from the Shannon
bound for large code rate but approaches it for small ones
(for both p =0.5 and 0.8). We find the same results as
in Hosaka ef al.’” Then, the same tendency can be shown
for biased messages with p < 0.5 but in those cases, for
symmetry reasons, we should use —f; as a transfer function
which gives slightly different BP equations (some signs
change). Hence, for simplicity we restrict the present study
to biased messages with p > 0.5.

The result for unbiased message and K = 3 are extremely
bad and the BP does not seems to converge to any relevant
codeword. This is surprising. On top of that, while the
performance are also poorer than K =1 for biased
messages, it is not as extreme as for the unbiased case.
The reasons for such a behavior are not very clear. The
codeword space structure is again clearly affected when
more than one hidden unit is used and is likely to perturb
the BP dynamics. Bias in the original message seems to be
another factor to take into account.

Then we try to investigate the structure of the codeword
space. We plot the histograms of the overlap of the
codewords obtained using the BP for K =1, N =100,
R=04, and p=0.5 in Fig. 13(a). In this case, it is
interesting to note that despite one might believe, the BP
does not converge to two different solutions. As discussed in
ref. 18, for K = 1, we have at least two optimal codewords
+s. Therefore, one might expect to see two peaks
concentrated around 1 but this is not the case. There are
two very small peaks around £1 and one large peak with its
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Fig. 13. Overlap of the solutions given by the BP-based encoder for lossy
compression using the PTH with R = 0.4 and y = 0.45 which is set by trial
and error. The Shannon bound is 0.15 for p = 0.5 and 0.057 for p = 0.8.
(a) K =1, N =100, and p = 0.5. The empirical distortion over the trial is
0.21. (b) K =1, N = 1000, and p = 0.5. The empirical distortion is 0.19.

center around 0. This implies that there are many codewords
completely uncorrelated which share very similar distortion
properties. To confirm this conjecture, we perform exactly
the same experiment but with a larger codeword size
N = 1000. Results are shown in Fig. 13(b).

This time, the small peaks around +1 completely vanish
and we have a Gaussian like distribution centered on 0.
This confirms the fact that there is a very large amount of
uncorrelated codewords sharing the same distortion proper-
ties. This is a surprising result.

We perform the same type of experiment but with K = 3.
We first consider unbiased messages (p = 0.5). We show the
result for N = 102 only because there is no major change
with larger value of N in this case. Results are plotted in
Fig. 14(a). We obtain a Gaussian like distribution centered
on 0. This means that the solution given by the BP are
almost uncorrelated between each others. This time they
do not correspond to any relevant solution as indicated by
the empirical distortion which is close to 0.5 meaning
completely random codewords. It seems that for K > 1 and
for unbiased messages (p = 0.5), the number of suboptimal
states becomes very large and the BP fails to converge to any
relevant codeword.

Then we consider biased messages (p = 0.8). Figure 14(b)
shows the results for N = 102. In this case we have two
peaks located at +1/3 linked by a rather high plateau and
two small peaks at 1. The peaks location corresponds to
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Fig. 14. Overlap of the solutions given by the BP-based encoder for lossy
compression using the PTH with R = 0.4 and y = 0.45 which is set by trial
and error. The Shannon bound is 0.15 for p = 0.5 and 0.057 for p = 0.8.
(a) K =3, N =102, and p = 0.5. The empirical distortion is 0.43. (b) K = 3,
N =102, and p = 0.8. The empirical distortionis 0.118. (c) K = 3, N = 999,
and p = 0.8. The empirical distortion is 0.101.

the 2% possible combinations of codewords ensured by the
structure of the network (discussed in ref. 18). This means
that in many cases the BP converge to one of this possible
2% combination. However the rather high plateau centered
on 0 shows that the BP converges many time to uncorrelated
codewords. This means that on top of the 2K codewords
sharing the same distortion properties, we have a large
number of uncorrelated codewords which share rather
similar distortion properties. We decide to investigate the
same case but with a larger value of N. Figure 14(c) shows
the result for N =999. This time, the peaks completely
vanish and we obtain a Gaussian like distribution centered
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Fig. 15. Empirical performance of the BP-based encoder for lossy
compression using the CTH with K =1, 3, and 5 for unbiased messages
(p =0.5, on the top of the figure) and biased message (p = 0.8, on the
bottom). Dashed lines are for K = 1, dotted lines are for K = 3 and dash
dotted lines are for K =5. We used N = 1000 for K =1 and 5, and
N =999 for K = 3. The inertia term y = 0.4 was set by trial and error. The
solid lines give the Shannon bound. The top one is for p = 0.5, the bottom
one is for p = 0.8.

on 0. The empirical distortion obtained 0.101 shows that the
BP converges to a relevant solution (even if not optimal).
This shows that as N gets larger, the number of uncorrelated
codewords sharing similar distortion properties becomes
extremely large. This is an interesting feature. However, the
results are not Shannon optimal and as K increases, the
results for biased messages becomes smoothly worse and
worse. Nevertheless, the reason why the BP fails to work for
unbiased messages when K > 1 is still unclear.

To conclude the case of the PTH, we can say that for
K =1, the BP converges but with relatively poor perfor-
mance. The codeword space exhibits an interesting structure,
showing that many uncorrelated codewords share very
similar properties. As the codeword length gets larger, the
number of these codewords sharing very similar distortion
properties seem to increase dramatically. For K > 1, the
performance smoothly deteriorates for biased messages but
for near unbiased ones, the BP fails. This is probably due to
the rise of suboptimal states when using more than 1 hidden
unit. The geometrical structure of the codeword space
remains to be investigated.

5.2.2  Committee tree with non-monotonic hidden units
(CTH)

We show the results obtained for the CTH with K =1, 3,
and 5 hidden units for unbiased and biased messages in
Fig. 15. We remind that when K = 1, the CTH is equivalent
to the PTH. The solid lines represent the rate distortion
function corresponding to the Shannon bound. The average
distortion for 100 trials is plotted.

The results are quite far from the Shannon bound for large
code rate but approaches it for small ones. However, as K
increases, the performance smoothly decreases implying that
the number of suboptimal states steadily increases with the
number of hidden units. Nevertheless it should be noted that
for unbiased messages, whereas the BP completely fails in
the PTH case for K > 1, this is not the case here. Anyway, in
the CTH case also, the reason for the deterioration of the
performance is clearly linked with the number of hidden units.
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Fig. 16. Overlap of the solutions given by the BP-based encoder for lossy
compresion using the CTH with K =3, R=0.4, p=0.8, and y=0.4
which is set by trial and error. The Shannon bound is 0.14. (a) N = 102. The
empirical distortion is 0.3. (b) N = 1002. The empirical distortion is 0.22.

Then we try to investigate the structure of the codeword
space. We consider only K = 3 because K = 1 is equivalent
to the PTH. We plot the histograms of the overlap of the
solutions obtained using the BP in Fig. 16(a). In this case,
for K = 3, we have four peaks. Two small ones around +1
and two big ones linked by a plateau around £1/3. This is
the same situation as the PTH with K =3, p = 0.8, and
N = 102. The four peaks corresponds to the 2X possible
combinations of codewords ensured by the structure of
the network (discussed in ref. 18). On the other hand, the
plateau around O shows that there is also many codewords
completely uncorrelated which share very similar distortion
properties. To confirm this conjecture, we perform exactly
the same experiment but with a larger codeword size
N = 1002. Results are shown in Fig. 16(b). This time,
the peaks vanish and we have a Gaussian like distribution
centered on 0. This confirm the fact that there is a very
large amount of uncorrelated codewords sharing the same
distortion properties. We have the same surprising result as
in the PTH case.

To conclude the case of the CTH, we can say that the BP
converges but with quite poor performance. Furthermore,
as K increases, the performance smoothly deteriorates. The
codeword space exhibits an interesting structure, showing
that many uncorrelated codewords share very similar
distortion properties. As the codeword length gets larger,
the number of these codewords seems to increase dramati-
cally. However the reasons of this performance deterioration
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Fig. 17. Empirical performance of the BP-based encoder for lossy
compression using the CTO with K =2, 3, 4, and 5 for unbiased messages
(p = 0.5). Dashed line is for K = 2, dotted line is for K = 3, solid line is for
K = 4 and dash dotted line is for K = 5. We used N = 1000 for K = 2,5,
N =999 for K =3, and N = 1004 for K = 4. The inertia term y = 0.4 was
set by trial and error. The continuous solid line (bottom) gives the Shannon
bound. (a) p = 0.5. (b) p = 0.8.

as K gets larger remains unclear. It is likely that the use
of several hidden units induces structural change in the
codeword space and that these are responsible for the BP
bad behavior.

5.2.3  Committee tree with a non-monotonic output unit
(CTO)

We show the results obtained for the CTO with K = 2, 3,
4, and 5 hidden units for unbiased messages in Fig. 17(a),
where the CTO cannot be defined for K = 1. The continuous
solid line represents the rate distortion function correspond-
ing to the Shannon bound. The average distortion for 100
trials is plotted. The results for unbiased messages (p = 0.5)
are quite similar as in the CTH case. The best performance
is obtain for the smaller K and then smoothly deteriorates.
However, the results do not deteriorate steadily (for example
K =5 gives better performance compared to K =4).
This is probably due to the fact that the free energy is a
discontinuous function of K as shown in the ref. 18. This
is then not surprising that the performance do not evolve
smoothly with K. On top of that, let us remind that the CTO
is expected to give the Shannon optimal performance only
for an infinite number of hidden units K. So it is fair the
results are quite far from being Shannon optimal. However,
as K increases, one may expect the performance to become
closer to the Shannon bound but this is not the case. This
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shows again that a larger number of hidden units clearly
penalizes the BP performance.

Next we perform the same experiment but for biased
messages with p = 0.8. The results are given in Fig. 17(b).
The results for biased messages with p = 0.8 exhibits
strange behavior. The best performance for small rates
R < 0.2 is obtained for K =3 and for R > 0.2, the best
performance is given for K =4. We have some strange
jump in performance for K = 2 between R = 0.3 and 0.4
and for K = 5 between R = 0.5 and 0.6 for example. This
is probably due to the fact that the tuning of the threshold
parameter k follows a discontinuous function of D which can
explain this kind of discontinuous jump. The results are hard
to interpret but we observed that for K > 5, the general
tendency is to get worse performance. As mentioned earlier,
the CTO is expected to give Shannon optimal performance
only for an infinite number of hidden units K so it is fair for
the results not to be Shannon optimal, especially for small K.
However, as K increases, one may expect the performance
to become closer to the Shannon bound but this is not the
case after K = 4. This shows again that a larger number of
hidden units clearly penalizes the BP performance.

Then we try to investigate the structure of the codeword
space. We show the case when K = 2 only here because the
other ones are similar. We plot the histograms of the overlap
of the solutions obtained using the BP for N =102 in
Fig. 18(a). In this case, we have almost the same picture as
in the PTH/CTH case with K = 1. Two small peaks around
+1 and one large plateau around 0. The small peaks
corresponds to the codewords which share exactly the same
distortion properties as ensured by the mirror symmetry of
the function fx (discussed in ref. 18). On the other hand, the
plateau around O shows that there are also many codewords
completely uncorrelated which share very similar distortion
properties. To confirm this conjecture, we perform exactly
the same experiment but with a larger codeword size
N = 1000. Results are shown in Fig. 18(b). This time, the
small peaks around £1 completely vanish and we have a
Gaussian like distribution centered on 0. This confirm the
fact that there is a very large amount of uncorrelated
codewords sharing the same distortion properties.

To conclude the case of the CTO, we can say that the
BP converges but with quite poor performance. On top of
that, because of the discontinuous free energy, we observe
some strange behavior like sudden jump in performance.
The CTO theoretically gives Shannon performance for an
infinite number of hidden units K so one may expect the
performance given by the BP to get better and better as K
increases however this is not the case. For K > 4, we
generally get poorer and poorer performance showing one
more time that there is some intimate link between the BP
performance and the number of hidden units. Finally, as
already found for the PTH and CTH, as the codeword
length gets larger, the number of codewords sharing similar
distortion properties seems to increase dramatically. The
geometrical feature of the codeword space remains to be
investigated.

6. Conclusion and Discussion

We have investigated the BP algorithm as a decoder of an
error correcting code scheme based on tree-like multilayer
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Fig. 18. Overlap of the solutions given by the BP-based encoder for lossy
compression using the CTO with K =2, R=0.4, p=0.5, and y =0.4
which is set by trial and error. The Shannon bound is 0.15. (a) N = 100. The
empirical distortion over the trial is 0.25. (b) N = 1000. The empirical
distortion over the trial is 0.21.

perceptron encoder. In the same way, we have investigated
the BP algorithm as a potential encoder of a lossy
compression scheme based on tree-like multilayer percep-
tron decoder. We have discussed that whether the BP can
give practical algorithms or not in these schemes. Unfortu-
nately, the BP implementations in those kind of fully
connected networks shows strong limitation, while the
theoretical results seems a bit promising. Instead, it reveals
it might have a rich and complex structure of the solution
space via the BP-based algorithms.

While these two schemes have been shown to yield the
Shannon optimal performance theoretically (under some
specific conditions, cf. refs. 6 and 18), they lack a practical
formal decoder and encoder, respectively. The BP algorithm
has been proposed as a way to calculate the marginalized
posterior probabilities of the relevant Boltzmann factor but
exhibits poor performance preventing this kind of schemes
from being practical. The number of hidden units should be
kept as small as possible as no gain have been observed by
using several ones. While the precise reasons behind this bad
behavior are still unclear at the present time, there is no
doubt that the number of hidden units have some deep
impact onto the solution space of the considered network,
which is infered from behavior of the BP-based algorithms.
It is very probable that the existence of mirror symmetry in
the network is at the origin of the BP failure. It is also very
likely that a singular structure similar to the one studied
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in the first part of this paper, prevents the standard BP
algorithm to work efficiently. This underline the necessity to
investigate the geometrical feature of the solution space
of the PTH/CTH/CTO as well as the BP dynamics to
understand why the BP does not work well when a large K is
used. It would be interesting to investigate the information
geometrical counterpart of the BP algorithm to see how well
it can performed. This remains a future topic of research.

On the other hand, as discussed in the ref. 15 and in the
ref. 18, the mirror symmetry seems to be a key factor to
achieve Shannon performance while using perceptron like
network in the lossy compression case. Since we have
fi(s) = fi(—s), one would expect to get two optimal solutions
(when K = 1) or more (due to the possible combinations of
=+s5;) but this is not the case. Using a small value of N, the
expected peaks induced by the structure of the network are
indeed observable but a large concentration of uncorrelated
codewords is also visible. Using a sufficiently large N, those
peaks completely vanish, and one will always get uncorre-
lated codewords, trial after trial, demonstrating that a very
large amount of uncorrelated codewords share very similar
distortion properties. The origin of such particular space
structure remains unclear. In the same way, the complete
failure of the BP in the case of the PTH with K > 1 remains
to be investigated. We might be able to investigate such
problems by evaluating the complexity>® of the systems.
This is a part of our future works.
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Appendix A: Derivation of the BP Decoder for Error
Correcting Code Case

The sf are Ising variables, we can reparameterize the
above probabilities using their corresponding expectation
values for the random variable s/,

o 1+ r?l;msﬁ
Pralsi) = —— . (A1)
o Lmlyst
Prals) = ——"". (A2)
; 1+ mis|
Psy 13 bx)i B = (A3)
where ), ,;,m),;, mj; denotes the relevant expectation values

at time step t. Computing the expectation is easier than
computing the message itself.
Using the following identity

14+x

In

= 2tanh ! x,

independently of the scheme and network considered,
one can already easily derived the following set of
equations,
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QZ(I)
gy (=1)

mif = tanh|:Ztanh : Aj“l+—1 i| (A-4)

WHER

1 L1
m! = tanh Ztanh ! A;l,+51 f]”(i . (A5)
=1 [(_ )

In the error correcting code case, Gy, is given by

= ZN/M{;]E y; [(1 - r—p)f}({\/%s, .x7}>

Note that we put g = 1.

(A-6)

A.1 Parity tree with non-monotonic hidden units (PTH)
In the case of the PTH F} is given by

TRy

Applying the Taylor expansion, this can be rewritten as

K
(] s
]
where
N/K
K .
/lf;z\/;sﬁxﬁ, Ny = \/7 (A9)

i ;ﬁt
and we have neglected the remaining {4 ifl, | I # 1} of order
O(1/+/N). Note that this approximation is justified by the
fact that we suppose N — oo. For the same reason we apply
the central limit theorem on the A% and find,

/\5 ~ N(A/ul’ q;u'l)’ (AIO)
where
N/K N/K
/ul VN Zmiwlx?zs CI:m Z(m/u 1)2 (A-11)
i ’;el
We finally get
,()Wl(€1) ~ 27 N/Msk ,u[(/l (A-12)
where
+oo K m
y
Sk;ul(/l )_/ HDZIX{_ 7(1—”_19)
X fk(/lll + /\/ul + v 1 - qiu‘/)
X ka(/_\;“]/ + 2V l - q;m/)
2]
W
+7(V—P) > (A-13)
and
2/2)dx
Dx = M (A-14)

V2r

Using the fact that A}; is of order O(1/+/N), we expand §; ,;
around O and get,
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O (i
Plalsp) ~ 27 MM FL(0) + Al 5 :
Ay 4=0
il

(A-15)
Finally, using (A-1) we get the expresion of n%;u.l as follows:

08} uit i

I
At K .U. 8/1” ﬂf;:O (A16)
;ul N 11 St (O)
kil

Evaluating 3§, W(O) and [3F), W(M)/M,]W —0» We can
explicitly obtain 7, ;.

So using (A-4), (A-5), and (A-16) iteratively until a fixed
point is reached, one should be able to decode the received
corrupted codeword y and find back the original message s°.
However, this procedure still requires O(N?) operations so
one might want to reduce the complexity of the algorithm.

For simplicity, we suppose a uniform prior g}, hereafter.
However, the results can be easily generalized for more
complex priors. Since 7, ; is of order O(1/+/N), we have

M
= tanh|:Z tanh ™! n%:t,i,:|,

W

l+l _ [1 (mH-l)Z] Iul (A17)

We can then evaluate the following equations using the
above approximation,

N/K
Qi = Z(mmz) f];u_(gﬁl)z- (A-18)
t;éz
where
K/N
Z(ml» (A19)
N/K
4y =2~ Zm,,(l [l il ) (A-20)
K
el = \/;mg,. (A-21)

We here insert the lacking term in the partial sum (Zi,# ~
>.—;) of the cross term since this should be negligible for
large N. In the same way we have

% VK
- K
Apit = Zm;u Ile ~ A /\

xll 811, (A-22)
i'#i
where

K/N
//.l - \/7 flxﬁ;’ (A23)

I N/K
ALy = \/; D — [ Pyt (A-24)

i=1

Using these equations, we can rewrite § pi and its
derivative as a function of 8?1,

08 it it .

% = Up (i), (A-25)
i =0

Teit(0) = Vi (el (A-26)

Then, because each 8;1 is of order O(1 /\/N), We approx-
imate {U} .. Vi i} by {UL i Vi,q} where we neglect all
the terms {¢f, | I’ # I}, which gives
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0”(,uil(8§l) ~ U]t(,;u'l(sf[)’ (A27)
Vi,ml("?f‘z) ~ Vi in(€i)- (A-28)
Using this approximation, we get
. /K
m;u] N x; D ull(‘gzl)’ (A-29)
where we put
Ut ()
q>z [(8;) — kil \il ] (A30)
i Viewit€ip)

Then once again, because &/, is of order O(1/+/N), we
perform the Taylor epxansion:
sfz=0:|.

K K DL (")

At t t 22 i

i~ Xt | P pi(0) + ) —my ————
it | N [ z VN 3¢t

(A-31)
For simplicity, we hereafter use the following abbreviations:
Uit ©) = Up i (A-32)
Vet = Vi (A-33)
(D;c,uil(o) = q);c,ul’ (A34)

U} i(€ip) ~
8851 £ =0 = SU’;M/’ (A-35)

Vi (&) 5
P =x; Vi (A-36)

il S'. =0

which appear in [d®} ,;,(¢7,)/0¢} ]| —o. Note that because we
neglect all the &, and use the valle of the above functions
evaluated at 0 only, we can drop the index i.

So using all this results we have (we suppose a uniform
prior for simplicity),

M
= tanh |:Z tanh™! (n%i”,):| ,
tanh[z\/; 1 @+ G l]i|, (A-37)

where we put

KN 0% e
Sl =N |, A3
n=1 L il
Neglecting small order terms, we obtain
KUV = VigaYi
i =~ Lkl TR — @l (A39)
» Nl; (V];M[)z B
We therefore obtain the approximated BP equation as
follows:
| K L g1
t+1 ll« t il
= tanh P m,&, + = ,
an |:Z it Pt T Mg kl+2 ,(—D)
(A-40)

where we have inserted back the term depending on the
prior. We then arrive at eq. (17). The BP algorithm is thus
finally reduced to eq. (A-40) and requires about O(N?)
operations for each step. The MPM estimator at time step 7 is
given by si = sgn(m}).

In this case the BP reduces to a single recurrent equa-
tion given by (A-40), where in the case of the PTH, we
have
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t M(l - = ) 1 LS + —
U= ﬁ [exp[— S Wit } - exp|: Sl H g[l — 2H(uit ) — 2H W), (A-41)
Viut = 5 5 (r -p) +Z (1 —r—p) 1—[[1 — 2H(wit,) — 2H(wi, )], (A-42)

=1

1
|:w;:,ruz exp|:——(wk ) i| + Wi exp[——(wz’_ﬂl)zﬂin

Ui = , (A-43)
vI—gq |:eXP|:——(wk Ml)2i| — €Xp |:__(wk Mz)z]:|
Vi = U (A-44)
where
k+ /\ — Al k — /\’ + /\
wit ul —
7, w, ;= A-45
kul m kol 1— q; ( )
and
—+00
Hu) = / Dx. (A-46)

In another schemes, we first calculate U,’wl, V,f’ul, Ufwl, and V,ﬁyul which are needed to obtain an iterative equation of
(A-40).

A.2  Committee tree with non-monotonic hidden units (CTH)
In the case of the CTH, F; is given by

e K
}'k({\/;sl -fo}> sgn|:ka <\/7sl x| >:| ~ sgn|:fk(/lf§ + A+ ka(/\f}):|- (A-47)

V£l
In the same way as the PTH, we find
+oo K

y
St () —/ ]‘[Dzl x {— (- r—p)sgn[fk(ﬂf? + A T2V 1= i)
yua
+ ka(R;w +avl - q;,-,)} + % (r - p)}. (A-48)

V£l
Evaluating g} ,;,(0) and [35; ,;,(1})/34} 114220, We obtain

t l—r— s
Ukt = ; (/72n(1r_ :;) |: |:— 5w k,ul)zi| - exp|: 5 (Wi, u1)2:|:| ;{Tl sgn|:]21: Tz]

K
1 + T + —
X 11;11[ 5 — wHW) = T HW) | (A-49)

1
Vli,u_i —(r—p)+—(1—r—p)Z{sgn[Zr,]n[ ;rz_T,H<wzz,>—r,H<wz,‘m>”, (A-50)

=1

1
|:wkﬂlexp|: (wkﬂl)2]+wkulexp|: (wkul)2:|i|U’

V 1 - q [exp[——(wk //_1)2:| - exp[——(wk /41 :|:|

Vi = Ui (A-52)

U, = (A-51)

where

k+ AL — Al k—AL + Al
+ ul ul — ul ul
W = 77— > Wy y=—"F—— . (A-53)

V-4 VI-q

and )__ denotes the sum over all the possible state for the dummy binary variables {r;} which can take the value +1.

A.3  Commiittee tree with a non-monotonic output unit (CTO)

In this case it should be noted that optimal performance are obtain only for a number of hidden unit K — oco. However we
decide to investigate the performance given by the scheme even with a finite number of hidden units. In the case of the CTO
Fr is given by
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(ST s

£l

In the same way as the PTH, we find

+oo K

S:;c,/ul(/l/;) - / 1—[ DZ[{ Y (1 —r—pl |:\/;Sgn(/lﬁ + /\;ul +zv1 - qtuil)
m
[ZSgn pul/ +ary 1 - qzu'l’):| + y?(r _p)}’ (ASS)

7
and have
Yy —r—p) [ 1 2:| u | &
U =T exp| — = (W} T — Hl-tw 1%, A-56
kil =S = ) P| =5 W) Zﬁ: i ;\/f zl;ll [—Trwi ] (A-56)
t Loy i u T K
Vk,m:E‘*‘?(V—P)‘f‘?(l—r—P)TZI Je ; 7R g —Twp ] g (A-57)
~ 1
Upu = —7== Weyu Ui u- (A-58)
: JI=¢q
Viwr = —Upu (A-59)
where
t N
ATIAT (A-60)

t
wk,;,d - \/Tq’
1

Appendix B: Derivation of the BP Encoder for Lossy Compression

In the lossy compression case, Gy, is given by

Gk,u<<\/—§sl -x;‘}) =e P41 - e_ﬁ)9|:y“}"k<{\/—§sl -xy}ﬂ, (B-1)

according to the ref. 18. The method to derive the set of BP messages is exactly same as in the error correcting cases. Thus, the BP
equations are given by (A-4), (A-5), and (A-16) for the standard algorithm and by (A-40) for the more approximated version. Only
Z, U, U, Vand V change. Therefore, in lossy compression case, we first calculate U/[c,,w V/i,,w U,’c, s and V,ﬁ, ul for each scheme.

B.1 Parity tree with non-monotonic hidden units (PTH)
In the case of the PTH, using the same method as the error correcting case, one can find F,

+oo K K
Tt i) = / ]_[ Dz;{ +2 fk(ﬂf; + A+ a1 =) [ [A(RL +2v/1 =) } (B-2)
Il
In the same way, one can obtain

_ e B
T S P I —(w 2| — exp| — —(w ) ]_[[1 _2HW' ) — 2Hw!" )], (B-3)
kol \/m kpul kypul 1 kypul kol
Vig=el+(1- eﬁ)< ]_[[1 —2H(wj! ) — 2H(w,§#,)]), (B-4)
1
i [wi,*,u exp |:_(wk 1) ] + Wi eXP|:_2(w;<,_ﬂz)2:|i| Ui
U 0= 1 , (B-5)
Vi—q |:exp|:——(wk Ml)2j| - exp|:——(u)k ) :|i|
Vlz,p_l = _Uk,/LZ’ (B6)

where
- k"‘/_\iu_;\fu - _k—/_\L,—i-/A\L,‘ B7)

Wewl = = 77— > kol =
H JV1i—4g H 1—gq

B.2 Committee tree with non-monotonic hidden units
In the case of the CTH, one can find
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+oo K K
(Al = / ]_[ Dy®| Y fi(Ah + ALy + vl = qhy) + 3" Y (Al + v/ 1= dly) |- (B-8)
£l
where ® denotes the unit step functlon which takes 1 for x > 0 and O for x < 0. Using the above equation, we have

, (1—eP)
Uk,/l.l = \/ﬁ [exp[— _(wkul)z] — exp[ (wkﬂl)z}]

+ B

x Z 7,0 “Zn ]‘[[ 5 ! —TZ/H(w;:M,)—‘L'I/H(w;{’ul,):| , (B-9)
=1 Il
_ _ +7 _
Vig=eP+1-ehHx3 1o Zfz 1_[[ L nH@,) — nH(w’k,,y} ’ (310
T =1
|:w1t:u1 exp|: ~(wy ul)2:| + wi, 1l eXP|: S(wy Mz)z]]Uli,,u
f = : TSI 1D
V 1 — ql[exp[__(wkul) i| - exp[__(wkuz) ]i|
Vit = —Uiu (B-12)
where
" k—l—/_\jd—f\id " k—/_\jd+f\§d.

(B-13)

N N

B.3  Committee tree with a non-monotonic output unit (CTO)
In this case it should be noted that optimal performance are obtain only for a number of hidden unit K — co. However we
decide to investigate the performance given by the scheme even with a finite number of hidden unit. We find §; as follows:

+o00 K
t my ~t
oA = f ]_[ Dz®O| y'fi ,/— sgn(A + ALy + v/l —¢y) + ,/ Z sen(Aly +av1—dy) | ). (B14)
oo 1;&1
We then have
_ K K
(1—eP 1 2 T
U = —————=exp| — 5 wi,)* [ D_{10| | D —= | [[ [ HI-Trwi ] (B-15)
Ll kol k,ul' >
V2nr(1 —q)) 2 o = VK] |14
K 7 K
AR (DR {CT A Z\/__ [[HI-mw},] ¢ (B-16)
T =1 K =1
~ 1
o t 1
Ui = 77— Wiu Ui (B-17)
1 —gq
ot __ t
kgl — _Uk,;d’ (BIS)
where
A — Al
t wl wl
w ) = ——2. (B-19)
V1—gq
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