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Abstract
An exact solution of the transient dynamics of an associative memory model
storing an infinite number of limit cycles with l finite steps is shown by means
of the path-integral analysis. Assuming the Maxwell construction ansatz,
we have succeeded in deriving the stationary state equations of the order
parameters from the macroscopic recursive equations with respect to the finite-
step sequence processing model which has retarded self-interactions. We have
also derived the stationary state equations by means of the signal-to-noise
analysis (SCSNA). The signal-to-noise analysis must assume that crosstalk
noise of an input to spins obeys a Gaussian distribution. On the other hand,
the path-integral method does not require such a Gaussian approximation of
crosstalk noise. We have found that both the signal-to-noise analysis and
the path-integral analysis give completely the same result with respect to the
stationary state in the case where the dynamics is deterministic, when we
assume the Maxwell construction ansatz. We have shown the dependence of
the storage capacity (αc) on the number of patterns per one limit cycle (l). At
l = 1, the storage capacity is αc = 0.138 as in the Hopfield model. The storage
capacity monotonically increases with the number of steps, and converges to
αc = 0.269 at l � 10. The original properties of the finite-step sequence
processing model appear as long as the number of steps of the limit cycle has
order l = O(1).
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1. Introduction

In recent years, theories that can analyse the transient dynamics have been discussed for
systems with frustrations, especially a correlation-type associative memory [1–11]. Düring
et al presented a path-integral method for an infinite-step sequence processing model and
analysed the properties of the stationary state [12]. By using Düring et al’s analysis, Kawamura
and Okada succeeded in deriving an exact macroscopic description of the transient dynamics
[13]. The transient dynamics can be analysed not only by using the path-integral method
[14, 15] but also by using the signal-to-noise analysis, e.g. statistical neurodynamics [16, 17].
The signal-to-noise analysis is an approximation theory in which crosstalk noise obeys a
Gaussian distribution. On the other hand, the path-integral method does not require such a
Gaussian approximation of crosstalk noise. However surprisingly, the macroscopic equations
of the exact solution given by means of the path-integral method are completely equivalent to
those of the signal-to-noise analysis with respect to this model.

It has turned out that the infinite-step sequence processing model can be more easily
analysed than the Hopfield model even if it is necessary to treat the dynamical process directly.
The reason for this is as follows. The retrieval state of the infinite-step sequence processing
model has no equilibrium state. Therefore, the correlations of the system are not very
complex. Since the Hopfield model takes the same states repeatedly, its statistical properties
are more complex than the infinite-step sequence processing model. Gardner et al analysed the
transient dynamics of the Hopfield model by using the path-integral method in the case where
the dynamics is deterministic [18]. They obtained the macroscopic equations of the transient
dynamics at time step t using O(t2) macroscopic variables and also obtained the macroscopic
equations of the equilibrium state from the transient dynamics. These are equivalent to replica
symmetric (RS) solutions given by using the replica method [18]. Recently in the Hopfield
model, Bolle et al compared the transient dynamics of the path-integral method with those
of the signal-to-noise analysis only for a few time steps in the dynamics [19]. They have
pointed out that the signal-to-noise analysis is exact up to time step 3 and inexact to step 4 or
beyond.

In order to discuss the relation between the path-integral method and the signal-to-noise
analysis in more detail, we analyse a finite-step sequence processing model, which includes
the Hopfield model and the infinite-step sequence processing model in special cases. In the
finite-step sequence processing model, the steady states of the system become limit cycles.
Since the finite-step sequence processing model can store limit cycles in the dynamics, the
properties of the system are periodic and dynamic essentially like the infinite-step sequence
processing model. Moreover, the statistical properties of the finite-step sequence processing
model are more complex than the infinite-step one. Since the period of the limit cycle is finite,
the network takes the same states repeatedly. Namely, the finite-step sequence processing
model has the theoretical difficulties of both the Hopfield model and the infinite-step sequence
processing model. From this point of view, it would be very interesting to theoretically discuss
the properties of the finite-step sequence processing model.

In this paper, we have exactly derived the transient dynamics of macroscopic recursive
equations with respect to the finite-step sequence processing model by means of the path-
integral analysis. Until now, only in the infinite-step sequence processing model, which has
no self-interactions, Düring et al derived the stationary state equations of the order parameters
by using the path-integral analysis [12]. The transient dynamics of various disordered systems
can also be analysed by using the path-integral method. Therefore, it is important to derive
stationary state equations of the order parameters from the macroscopic recursive equations.
Assuming the Maxwell construction ansatz, we have succeeded in deriving the stationary
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state equations from the macroscopic recursive equations with respect to the model which has
self-interactions, i.e. the finite-step sequence processing model.

We also analysed the finite-step sequence processing model by means of the signal-to-
noise analysis (SCSNA). The stationary state equations given by the path-integral analysis
are equivalent to those of the signal-to-noise analysis. This result corresponds to the fact that
the replica method and the signal-to-noise analysis give completely equivalent results in the
stationary state analysis of the Hopfield model. Namely, the transient dynamics given by the
signal-to-noise analysis gives an exact solution in both the stationary state and the first few
time steps in the dynamics.

2. Definitions

Let us consider a system storing an infinite number of limit cycles with l finite steps. The
system consists of N Ising-type spins (or neurons) σi = ±1. We consider the case where
N → ∞. The spins update the state synchronously with the probability

Prob[σi(t + 1) = −σi(t)] = 1
2 [1 − σi(t) tanh βhi(t)] (1)

hi(t) =
N∑

j=1

Jijσj (t) + θi(t) (2)

where β is the inverse temperature, β = 1/T . When the temperature is T = 0, the updating
rule of the state is deterministic. The term θi(t) is a time-dependent external field which is
introduced in order to define a response function. The interaction Jij stores p random patterns

ξν,µ = (
ξ

ν,µ

1 , . . . , ξ
ν,µ

N

)T
so as to retrieve the patterns as

ξν,1 → ξν,2 → · · · → ξν,l → ξν,1 (3)

sequentially for any µth limit cycle. For instance, the entries of the interaction matrix J = (Jij )

are given by

Jij = 1

N

p/l∑
ν=1

l∑
µ=1

ξ
ν,µ+1
i ξ

ν,µ

j (4)

where the pattern index µ are understood to be taken modulo l. Since the number of limit
cycles is p/l, the total number of stored patterns is p. The number of stored patterns p is given
by p = αN , where α is called the loading rate. In our analysis, the number of steps for each
limit cycle l is kept finite. Each component of the patterns is assumed to be an independent
random variable that takes a value of either +1 or −1 according to the probability

Prob
[
ξ

ν,µ

i = ±1
] = 1

2 . (5)

For the subsequent analysis, the matrix J is represented as

J = 1

N
ξT Sξ (6)

where the p × N matrix ξ is defined as

ξ = (ξ1,1 · · · ξ1,lξ2,1 · · · ξ2,l · · · ξp/l,1 · · · ξp/l,l)T (7)

and the p × p matrix S is defined as

S =




S′ · · · 0
. . .

0 · · · S′


 (8)

and the l × l matrix is defined as S′ = (S ′
µν) = (δµ,(ν+1) mod l). When l = 1, i.e. S = 1 (1 is

the unit matrix), the system is equivalent to the Hopfield model.
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3. Path-integral analysis

Düring et al discussed the sequential associative memory model by means of the path-integral
analysis [12]. In this section, we introduce macroscopic state equations for the model with a
finite temperature T � 0, according to their paper.

In order to analyse the transient dynamics, the generating function Z[ψ] is defined as

Z[ψ] =
∑

σ(0),...,σ(t)

p[σ(0), . . . , σ(t)] exp

(
−i

∑
s<t

σ(s) · ψ(s)

)
(9)

where ψ = (ψ(0), . . . , ψ(t −1))T and the state σ(s) = (σ1(s), . . . , σN(s))T denotes the state
of the spins at time s. The probability p[σ(0), . . . , σ(t)] denotes the probability of taking the
path from initial state σ(0) to state σ(t) at time t through σ(1), σ(2), . . . , σ(t − 1). As (9)
shows, the generating functional entails the summation of all 2(t+1)N paths which the system
can take from time 0 to t. One can obtain all the relevant order parameters, i.e. the overlap
m(s), the correlation function C(s, s ′) and the response function G(s, s ′), by calculating the
appropriate derivatives of the above functional and letting ψ tend to 0 afterwards as follows:

m(s) = i lim
ψ→0

1

N

N∑
i=1

ξ
1,s
i

∂Z[ψ]

∂ψi(s)
(10)

C(s, s ′) = − lim
ψ→0

1

N

N∑
i=1

∂2Z[ψ]

∂ψi(s)∂ψi(s ′)
(11)

G(s, s ′) = i lim
ψ→0

1

N

N∑
i=1

∂2Z[ψ]

∂ψi(s)∂θi(s ′)
. (12)

Using the assumption of self-averaging, we replace the generating functional Z[ψ] with its
disorder-averaged generating functional Z̄[ψ]. Evaluating the averaged generating function
Z̄[ψ] through the saddle-point method, we obtain the following saddle-point equations for the
order parameters of (10)–(12) in the thermodynamical limit, i.e. N → ∞ (see appendix A).

m(s) = 〈〈ξσ (s)〉〉 (13)

C(s, s ′) = 〈〈σ(s)σ (s ′)〉〉 (14)

G(s, s ′) = ∂〈〈σ(s)〉〉
∂θ(s ′)

. (15)

The average over the effective path measure is given by

〈〈g(σ,v)〉〉 =
〈∫

Dv Tr
σ

g(σ,v)p[σ(0)]
t∏

s=1

1

2
[1 + σ(s) tanh βh(σ,v, s − 1)]

〉
ξ

(16)

Dv ≡ dv e− 1
2 v·R−1v

√
(2π)t |R| (17)

Tr
σ

≡
∑

σ(0),...,σ (t)∈{−1,1}
(18)

h(σ,v, s) = ξ s+1m(s) + θ(s) +
√

αv(s) + (Γσ)(s) (19)

R =
l−1∑
a=0

∑
m,n�0

Gml+aC(G†)nl+a (20)
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Γ = α

l

l−1∑
µ=0

e2πiµ/l[1 − e2πiµ/lG]−1 (21)

with Γ = K̂†, Q̂ = − 1
2αiR̂ and p[σ(0)] = 1

2 [1 + σ(0)m(0)] which is the initial spin
probability. The operator 〈·〉ξ denotes the average over the condensed patterns. The
term (Γσ)(s) denotes the sth element of the vector Γσ. The vectors σ and v denote
σ = {σ(0), . . . , σ (t)} and v = {v(0), . . . , v(t − 1)}, respectively. Equations (13)–(21)
entirely describe the dynamics of the system. The term

∏t
s=1

1
2 [1 + σ(s) tanh βh(σ,v, s − 1)]

in (16) cannot be factorized with respect to spin variables at different times. Calculation of
the spin summation of (16) requires an exponential time O(et ) at time t. In the infinite-step
sequence processing model, the local field h(σ,v, s) depends on only spin variables at time s
[12]. Therefore the term

∏t
s=1

1
2 [1 + σ(s) tanh βh(σ,v, s − 1)] can be factorized, so the spin

summations can be taken easily.

4. The stationary state

In this section, we inspect time-translation invariant solutions of our macroscopic
equations (13)–(15) for the deterministic dynamics, i.e. β → ∞ (T = 0). The time-translation
invariant solutions will describe motion on a macroscopic limit cycle:


m(s) = m

C(s, s ′) = C(s − s ′)
G(s, s ′) = G(s − s ′)

(22)

with θ(s) = θ . Now, we disregard the transient states. Note that the condition of (22) includes
an unspoken condition that the transient states are disregarded. Therefore, we put that the
dynamics is already in the stationary state at time s = 0 under this assumption. In the zero
noise limit, i.e. T = 0 (β → ∞), the dynamics becomes deterministic. Therefore, we also
assume that the system takes a fixed path as

σ(s + l) = σ(s) (23)

for any time s � 0. The path which the system takes after time s � 0 can be described as

σ(s) = ηs (24)

by only l constants η0, . . . , ηl−1 ∈ {−1, 1}. The pattern index s of the constants ηs is understood
to be taken modulo l. Note that it is not necessary to calculate these constants {ηs} explicitly.
When the variable transformation

χ(s) = ηsσ (s) (25)

is carried out to spin variables σ(s), the transformed spin variables χ(s) take the same value
for any time s, i.e. χ(s) = χ(s ′) for any s, s ′. Equation (16) means the expectation of g(σ,v)

with respect to the path probability. In the zero noise limit, equation (16) becomes

〈〈g(σ,v)〉〉 =
〈∫

Dv Tr
σ

g(σ,v)p[σ(0)]
t∏

s=1

δσ(s), sgn h(σ,v,s−1)

〉
ξ

. (26)

When the spin variables have periodicity as σ(s + l) = σ(s), the Gaussian random fields are
also deterministic as v(s + l) = v(s) (see appendix B). For any function φ({σ(s)}) and any
constants c0, . . . , ct ∈ {−1, 1}, the following identity holds:∑
σ(0),...,σ (t)∈{−1,1}

φ(σ(0), . . . , σ (t)) =
∑

σ(0),...,σ (t)∈{−1,1}
φ(c0σ(0), . . . , ctσ (t)). (27)
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Applying (27) to (26) and substituting (25), we obtain

〈〈g(σ,v)〉〉 =
〈∫

Dv Tr
σ

g({c0σ(0), . . . , ctσ (t)},v)p[c0σ(0)]

×
t∏

s=1

δcsσ (s), sgn h({c0σ(0),...,ct σ (t)},v,s−1)

〉
ξ

=
〈∫

Dv Tr
χ

g({c0η0χ(0), . . . , ctηtχ(t)},v)

× p[c0η0χ(0)]
t∏

s=1

δcsηsχ(s), sgn h({c0η0χ(0),...,ct ηt χ(t)},v,s−1)

〉
ξ

=
〈∫

Dv Tr
χ

g({χ(0), . . . , χ(t)},v)p[χ(0)]
t∏

s=1

δχ(s), sgn h({χ(0),...,χ(t)},v,s−1)

〉
ξ

(28)

with

Tr
χ

≡
∑

η0χ(0),...,ηt χ(t)∈{−1,1}
=

∑
χ(0),...,χ(t)∈{−1,1}

. (29)

In the derivation of (28), we put the constants {cs} as cs = ηs for all s. Generality is kept even
if cs = ηs for all s. Namely, with respect to the transformed spin variable χ(s), the effective
single spin described by (28) is

χ(s) = sgn h({χ(0), . . . , χ(t)},v, s − 1). (30)

The transformed spin variables χ(s) are deterministic even if (30) includes the Gaussian
random fields v, since the Gaussian random fields are deterministic. In order to get rid of the
self-interaction, we assume the Maxwell construction ansatz. Using the identity χ(s) = χ(s ′)
for any s, s ′ to (30) and applying the Maxwell construction, we get

χ(s) = sgn

[
ξ sm(s − 1) + θ(s − 1) +

√
αv(s − 1) +

∑
s ′<s

�(s, s ′)χ(s ′)
]

= sgn

[
ξ sm(s − 1) + θ(s − 1) +

√
αv(s − 1) + χ(s)

∑
s ′<s

�(s, s ′)
]

= sgn h(v, s − 1) (31)

with h(v, s) ≡ ξ s+1m(s) + θ(s) +
√

αv(s). Substituting (31) into (28), we obtain

〈〈g(σ,v)〉〉 =
〈∫

Dv Tr
χ

g(χ,v)p[χ(0)]
t∏

s=1

δχ, sgn h(v,s−1)

〉
ξ

. (32)

Thus, we can get rid of the self-interaction in the single spin problem by using the Maxwell
construction in the zero noise limit, i.e. T = 0. Since (32) can be factorized with respect to the
tranformed spin variables χ(s) at different times, we can easily perform the spin summations.
After simple rescalings we arrive at

m(s) =
〈
ξ s

∫
Dv sgn h(v, s − 1)

〉
ξ

(33)

C(s, s ′) = δs,s ′ + [1 − δs,s ′ ]

〈∫
Dv[ sgn h(v, s − 1)][ sgn h(v, s ′ − 1)]

〉
ξ

(34)
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G(s, s ′) = δs,s ′−1 lim
β→∞

β

{
1 −

〈∫
Dv tanh2 βh(v, s − 1)

〉
ξ

}
. (35)

We now calculate the matrix R under the condition of (22). Since the matrices G and C
become Toeplitz matrices (especially if C is symmetric) under these conditions, C and G can
be approximately regarded as commuting matrices, i.e. CG = GC. Therefore, the matrix R
simplifies to

R =
l−1∑
a=0

Ga

( ∑
m,n�0

Gml(G†)nlC

)
(G†)a

=
l−1∑
a=0

Ga([1 − Gl]−1[1 − (G†)l]−1C)(G†)a

= [1 − GG†]−1[1 − (GG†)l][1 − Gl]−1[1 − (G†)l]−1C (36)

We consider the persistent parts of C(τ) and R(τ) as C(τ) → q and R(τ) → r for τ → ∞
and also consider the non-persistent parts C̃(τ ) → 0 and R̃(τ ) → 0, i.e. C(τ) = q + C̃(τ )

and R(τ) = r + R̃(τ ). Upon rewriting G(τ) = βδτ,1[1 − q̃] and r = qρ given by (36), we
obtained

m =
〈
ξ

∫
Dz

∫
D̃v sgn h(v, 0|z)

〉
ξ

(37)

q =
〈∫

Dz

∫
D̃v[ sgn h(v, τ |z)][ sgn h(v, 0|z)]

〉
ξ

(38)

q̃ = lim
β→∞

〈∫
Dz

∫
D̃v tanh2 βh(v, 0|z)

〉
ξ

(39)

r = qρ (40)

from (33)–(35) with D̃v ≡ dv e− 1
2 v·R̃−1

v[(2π)t |R̃|]−1/2, Dz = dz√
2π

e−z2/2 and h(v, τ |z) ≡
ξ τm + θ + z

√
αqρ +

√
αv(τ). The matrix G is given by

G =




0 0 0 · · · 0
G(1) 0 0 · · · 0

0 G(1) 0 · · · 0
...

. . .
...

0 · · · 0 G(1) 0


 . (41)

from (35). Equation (36) can be changed to

[1 − (G†)l − Gl − (G†G)l][1 − (GG†)l]−1[1 − GG†]R = C. (42)

The identity GG† � G(1)21 holds in the case where time s is sufficiently large, so the left-hand
side of (42) becomes

[1 − (G†)l − Gl − (G†G)l][1 − (GG†)l]−1[1 − GG†]R

=




D(0) D(1) · · · D(t − 1)

D(1) D(0) · · · D(t − 2)

...
...

. . .
...

D(t − 1) D(t − 2) · · · D(0)


 (43)
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where

D(0) = (
1 + g2

1

)
g2R(0) − 2g1g2R(1) (44)

D(s) = (
1 + g2

1

)
g2R(s) − g1g2[R(s − 1) + R(s + 1)] (0 < s < t − 1) (45)

D(t − 1) = (
1 + g2

1

)
g2R(t − 1) − 2g1g2R(t − 2) (46)

with g1 ≡ G(1)l and g2 ≡ [1 − G(1)2]/[1 − G(1)2l]. Since D and C are symmetric
Toeplitz matrices, they can be diagonalized by using the discrete Fourier transformation (see
appendix C). The Fourier transformations (or the lattice Green functions) D̂k, Ĉk of the
matrices D,C are given by

D̂k �
t−1∑
τ=0

{(
1 + g2

1

)
g2R(τ) − g1g2[R(τ − 1) − R(τ + 1)]

}
eikτ (47)

Ĉk =
t−1∑
τ=0

C(τ) eikτ . (48)

For any wave number k, D̂k = Ĉk holds when D = C. Taking the limit s → ∞ about
D̂0 = Ĉ0, the following relationship is obtained:

r = 1 − G(1)2l

(1 − G(1)2)(1 − G(1)l)2
q. (49)

By working out the remaining integrals over v and setting θ = 0, we finally obtain the
stationary state equations of the order parameters as follows:

m = erf

(
m√
2αρ

)
(50)

U =
√

2

παρ
e− m2

2αρ (51)

ρ = 1 − U 2l

(1 − U 2)(1 − Ul)2
(52)

with q = 1, q̃ = 1 and U ≡ G(1) where erf(·) denotes the error function defined by
erf(x) ≡ 2

π

∫ x

0 e−u2
du. It turns out that these stationary state equations (50)–(52) given by

this exact solution are equivalent to those of the signal-to-noise analysis (see appendix D)
[5]. Figure 1 shows the storage capacity αc and the number of patterns per one limit cycle s.
Figures 2 and 3 compare the theoretical results and computer simulations for l = 3, 7 (the
number of spins is N = 3000, and the number of iterations is 11). The data points and error
bars show the results of the computer simulation. With respect to the computer simulation in
figures 2 and 3, the stationary overlaps are defined as m(100l) and m(50l), respectively. It is
confirmed that the theoretical results are in good agreement with the computer simulations.
Storage capacity monotonically increases from αc = 0.138 (l = 1) with the number of steps l.
In the large l limit, the storage capacity finally converges to αc = 0.269, which coincides with
the theoretical result for the infinite-step sequence processing model given by Düring et al
[12]. The original properties of the finite-step sequence processing model appear as long as
the number of steps of a limit cycle l has order l = O(1). In the case where l has order
more than O(1), the properties are the same as the properties of the infinite-step sequence
processing model.
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Figure 1. The storage capacity αc and the number of patterns per one limit cycle s.
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Figure 2. Computer simulations (l = 3, N = 3000, 11 times): the overlap m and loading rate α.
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Figure 3. Computer simulations (l = 7, N = 3000, 11 times): the overlap m and loading rate α.
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5. Conclusions

We exactly analysed an associative memory model storing an infinite number of limit cycles
with finite steps by means of the path-integral method. In the case where the dynamics is
deterministic, the statistical properties are simplified like those of the infinite-step sequence
processing model by using the Maxwell construction. We also derived the macroscopic
equations for stationary states at T = 0.

We obtained the dependence of the storage capacity (αc) on the number of patterns per
one limit cycle (l). At l = 1, the storage capacity is αc = 0.138, as in the Hopfield model.
The storage capacity monotonically increases with the number of limit cycles, and converges
to αc = 0.269 at l � 10. The original properties of the finite-step sequence processing model
appear as long as the number of steps of the limit cycle has order l = O(1).

In the case where the dynamics is deterministic, we also derived the stationary state
equations by using the Maxwell construction. The stationary state equations are equivalent to
those of the signal-to-noise analysis. This means that the signal-to-noise analysis applied to
the stationary state is exact in spite of including errors in the middle of the transient dynamics
in the zero noise limit.

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas
no 14084212, for Scientific Research (C) no 16500093 and for Encouragement of Young
Scientists (B) no 15700141 from the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

Appendix A. Derivation of order parameter equations

Düring et al discussed the sequential associative memory model by using the path-integral
method [12]. Here we discuss for the model with finite temperature T, according to their
paper. Most of the technical details to derive order parameter equations are almost identical
to the paper of Düring et al [12].

The generating functional Z̄[ψ] contains both condensed and non-condensed patterns.
We isolate the non-condensed ones by introducing the local field h and the variables x,y:

1 =
∫

dh dĥ

(2π)Nt

∏
i

exp

(
iĥi(s)

[
hi(s) −

∑
j

Jij σj (s) − θi(s)

])
(A1)

1 =
∫

dx dx̂

(2π)(p−1)t
exp

(
i
∑
s<t

p/l∑
ν=1

l∑
µ=1(µ 
=s at ν=1)

x̂νµ(s)

[
xνµ(s) − 1√

N

∑
i

ξ
ν,µ+1
i ĥi (s)

])
(A2)

1 =
∫

dy dŷ

(2π)(p−1)t
exp

(
i
∑
s<t

p/l∑
ν=1

l∑
µ=1(µ 
=s at ν=1)

ŷνµ(s)

[
yνµ(s) − 1√

N

∑
i

ξ
ν,µ

i σi(s)

])
. (A3)

We isolate the various relevant macroscopic observables by inserting integrals over appropriate
δ-functions:

1 =
∫

dm dm̂

(2π/N)t
exp

(
i
∑
s<t

m̂(s)

[
m(s) − 1

N

∑
i

ξ
1,s
i σi(s)

])
(A4)
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1 =
∫

dk dk̂

(2π/N)t
exp

(
i
∑
s<t

k̂(s)

[
k(s) − 1

N

∑
i

ξ
1,s+1
i ĥi (s)

])
(A5)

1 =
∫

dq dq̂

(2π/N)t
2 exp

(
i

∑
s,s ′<t

q̂(s, s ′)
[
q(s, s ′) − 1

N

∑
i

σi(s)σi(s
′)

])
(A6)

1 =
∫

dQ dQ̂

(2π/N)t
2 exp

(
i

∑
s,s ′<t

Q̂(s, s ′)
[
Q(s, s ′) − 1

N

∑
i

ĥi (s)ĥi(s
′)

])
(A7)

1 =
∫

dK dK̂

(2π/N)t
2 exp

(
i

∑
s,s ′<t

K̂(s, s ′)
[
K(s, s ′) − 1

N

∑
i

σi(s)ĥi(s
′)

])
. (A8)

The generating functional which for N → ∞ will be dominated by saddle points. We obtain

Z̄[ψ] =
∫

dm dm̂ dk dk̂ dq dq̂ dQ dQ̂ dK dK̂ eN(�+�+�)+O(N1/2) (A9)

by substituting (A1)–(A8) into (9), where

� = i
∑
s<t

[m̂(s)m(s) + k̂(s)k(s) − m(s)k(s)]

+ i
∑
s,s ′<t

[q̂(s, s ′)q(s, s ′) + Q̂(s, s ′)Q(s, s ′) + K̂(s, s ′)K(s, s ′)] (A10)

� = 1

N

∑
i

ln Tr
σ

pi(σ (0))

∫
{dh dĥ} exp

(∑
s<t

[βσ(s + 1) − ln 2 cosh βh(s)]

)

× exp

(
−i

∑
s,s ′<t

[q̂(s, s ′)σ (s)σ (s ′) + Q̂(s, s ′)ĥ(s)ĥ(s ′) + K̂(s, s ′)σ (s)ĥ(s ′)]

)

× exp

(
i
∑
s<t

ĥ(s)
[
h(s) − θi(s) − k̂(s)ξ

1,s+1
i

] − i
∑
s<t

σ (s)
[
m̂(s)ξ

1,s
i + ψi(s)

])
(A11)

� = 1

N
ln

∫
du dv

(2π)(p−t)t
exp

(
i
∑
µ>t

∑
s<t

uν,µ+1(s)vν,µ(s)

)

× exp

(
−1

2

∑
ν>1,µ�1

∑
s,s ′<t

[uν,µ(s)Q(s, s ′)vν,µ(s ′) + uν,µ(s)K(s, s ′)vν,µ(s ′)]

)

× exp

(
−1

2

∑
ν>1,µ�1

∑
s,s ′<t

[vν,µ(s)K(s, s ′)uν,µ(s ′) + vν,µ(s)q(s, s ′)vν,µ(s ′)]

)
(A12)

with the shorthand notation {dh dĥ} = ∏
i

dhi (s)dĥi (s)

2π
.

In the limit N → ∞, the integral (A9) will be dominated by the saddle point of the
extensive exponent � +�+�. The saddle-point equations which are derived by differentiation
with respect to integration variables {m, m̂,k, k̂, q, q̂,Q, Q̂,K, K̂} are as follows:

m̂(s) = k(s) = 0 (A13)

Q(s, s ′) = q̂(s, s ′) = 0 (A14)
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m(s) = k̂(s) = lim
N→∞

1

N

∑
i

〈
σ(s)ξ

1,s
i

〉
i

(A15)

q(s, s ′) = C(s, s ′) = lim
N→∞

1

N

∑
i

〈σ(s)σ (s ′)〉i (A16)

K(s, s ′) = iG(s, s ′) = i lim
N→∞

1

N

∑
i

∂〈σ(s)〉i
∂θi(s ′)

(A17)

Q̂(s, s ′) = i lim
Q→0

∂�

∂K(s, s ′)

∣∣∣∣
saddle

(A18)

K̂(s, s ′) = ∂�

∂K(s, s ′)

∣∣∣∣
saddle

(A19)

where f |saddle denotes an evaluation of a function f at the dominating saddle point, 〈·〉i ,
denotes

〈f (σ,h, ĥ)〉i =
〈

Trσ
∫ {dh dĥ}Wi(σ,h, ĥ)f (σ,h, ĥ)

Trσ
∫ {dh dĥ}Wi(σ,h, ĥ)

〉
ξ

(A20)

Wi(σ,h, ĥ) = pi(σ (0))

[
exp

(∑
s<t

(βσ (s + 1)h(s) − ln 2 cosh βh(s))

)

× exp

(
i
∑
s<t

(
ĥ(s)

{
h(s) − θi(s) − k̂(s)ξ

1,s+1
i

} − θ(s)m̂(s)ξ
1,s
i

))

× exp

(
−i

∑
s,s ′<t

(q̂(s, s ′)σ (s)σ (s ′) + Q̂(s, s ′)ĥ(s)ĥ(s ′) + K̂(s, s ′)σ (s)ĥ(s ′))

)]

(A21)

and 〈·〉ξ denotes the average over the condensed patterns. We now calculate the right-hand sides
of (A18) and (A19). The eigenvalues sµ of a matrix S are given by sµ = e2π iµ/l (the multiplicity
is p/l) from |λ1 − S| = |λ1 − S′|p/l . Since S′ is a unitary matrix, i.e. S′†S′ = 1, the matrix
S is also unitary, S†S = diag(S′†, . . . ,S′†) diag(S′, . . . ,S′) = diag(S′†S′, . . . ,S′†S′) = 1.
A (µ,µ)-element of (S†)mSn becomes [(S†)mSn]µµ = δmn by using the unitarity of S, where
δmn denotes Kronecker’s delta function. The identity (S)l = (S†)l = S is established because
(S′)l = (S′†)l = S′. Therefore, the identity [(S†)mSn]µµ = δmn holds for the following
value (m, n): {

m = m′l + a

n = n′l + a
(A22)

with m′, n′ ∈ {0, 1, . . .} and a ∈ {0, . . . , l−1}. The multiplicity of the eigenvalues of the matrix
S′ is 1, so rank(S′ − sµ1) = l −1. Hence, rank(S − sµ1) = (p/l)rank(S′ − sµ1) = p −p/l.
This means that the matrix S can be diagonalized by an appropriate non-singular matrix as

diag(

p/l︷ ︸︸ ︷
s0, . . . , s0, . . . ,

p/l︷ ︸︸ ︷
sl−1, . . . , sl−1 ).

By working out the saddle-point equation (A18), Q̂ becomes as follows:

Q̂(s, s ′) = −1

2
αi

∑
m,n�0

lim
p→∞

∑
µ�p

{(S ⊗ G)m[1 ⊗ C](S† ⊗ G†)n}µµ(s ′, s). (A23)
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Hence Q̂ is given by

Q̂ = −1

2
αi

l−1∑
a=0

∑
m′,n′�0

Gm′l+aC(G†)n
′l+a. (A24)

We define a matrix Γ = S ⊗ R as having matrix elements �µµ′(s, s ′) = Sµµ′R(s, s ′) for
µ,µ′ ∈ {1, . . . , p} and s, s ′ ∈ {0, . . . , t − 1} where y = Γx will operate as yµ(s) =∑

µ′>t

∑
s ′<t Sµµ′R(s, s ′)xµ′(s ′) for each (µ, s). Equation (A19) reduces to

K̂(s, s ′) = −1

2
α

∂

∂G(s, s ′)
lim

p→∞
1

p
{ln det[1 ⊗ 1 − S† ⊗ G†] + ln det[1 ⊗ 1 − S ⊗ G]}

= −α
∂

∂G(s, s ′)
lim

p→∞
1

p
ln

l−1∏
µ=0

(det[1 − e2π iµ/lG†])p/l (A25)

K̂ = α

l

l−1∑
µ=0

e2π iµ/l[1 − e2π iµ/lG†]−1. (A26)

Replacing ξ
1,s
i → ξ s , we obtain the order parameters of (13)–(15).

Appendix B. The periodicity of the Gaussian random field

Using the time-translation invariant ansatz, i.e. C(s, s ′) = C(s−s ′), C(s) also have periodicity
as

C(s + l) = C(s) (B1)

for any s, when spin variables σ(s) have periodicity, i.e. σ(s + l) = σ(s). It is confirmed
that the vector v obeys the Gaussian distribution with mean 0 and covariance matrix R from
equation (16). The covariance matrix R of the Gaussian random fields v is given by (36).
Since the matrix R is also a symmetric Toeplitz matrix, we can put R(s, s ′) = R(s − s ′)
where R(s, s ′) are the elements of the matrix R. When C(s + l) = C(s), we approximately
get R(s + l) = R(s). The correlation coefficient between crosstalk noise v(s) and v(s + l)

becomes

Corr(v(s + l), v(s)) = Cov(v(s + l), v(s))√
V (v(s + l))V (v(s))

= R(s + l, s)√
R(s + l, s + l)R(s, s)

= 1

for any s, s ′. The v(s) distribution and the v(s + l) distribution have the same mean and
variance, i.e. E(v(s)) = E(v(s + l)) = 0 and V (v(s)) = R(s, s) = R(0) = R(s + l, s + l) =
V (v(s + l)). Therefore, the identity

v(s + l) = v(s) (B2)

holds for any s. Hence, the Gaussian random fields v(s) also have periodicity as v(s + l) = v(s)

when spin variables have periodicity as σ(s + l) = σ(s). Therefore, v(s) can be considered
as quenched noise. After the states v(0), . . . , v(l − 1) occur at random, v(s) continues taking
the same values periodically. Therefore, we can assume that v(s) is deterministic for a fixed
site. The Gaussian random fields v(s) are only distributed with respect to site index i.
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Appendix C. The Fourier transformation of the symmetric Toeplitz matrix

Symmetric Toeplitz matrices can be diagonalized by using the discrete Fourier transformation.
The Fourier transformation was used to obtain the identity of (49). The Fourier transformation
is defined as

ξ̂k = 1√
t

∑
j

ξj e−ikj (C1)

and the inverse Fourier transformation is defined as

ξj = 1√
t

∑
k

ξ̂k eikj (C2)

where k denotes the wave number and its degree of freedom is t. Each component of k takes the
value 0, 2

t
π, 4

t
π, . . . , 2(t−1)

t
π . The following symmetric Toeplitz matrix can be diagonalized

by using the Fourier representation:

D =




D0 D1 · · · Dt−1

D1 D0 · · · Dt−2

...
...

. . .
...

Dt−1 Dt−2 · · · D0


 . (C3)

The Fourier representation of the quadratic form ξT Dξ becomes

ξT Dξ =
t∑

i=1

t∑
j=1

ξiD|i−j |ξj

=
t−1∑
τ=0

t∑
j=1

ξjDτ ξj−τ

=
∑

τ

∑
j

(
1√
t

∑
k1

ξ̂k1 eik1j

)
Dτ

(
1√
t

∑
k2

ξ̂k2 eik2(j−τ)

)

=
∑

k

ξ̂k

( ∑
τ

Dτ eikτ

)
ξ̂−k (C4)

where the index j of the variables ξj is understood to be taken modulo t. Therefore, the Fourier
transformation of the symmetric Toeplitz matrix D = (Dτ ) is given by

D̂k =
∑

τ

Dτ eikτ . (C5)

This transformation is also called the lattice Green function.

Appendix D. The signal-to-noise analysis of the finite-step sequence processing model

We discuss the stability of limit cycles by means of the signal-to-noise analysis. Let us
consider the following deterministic synchronous dynamics:

xt+1
i = F


 N∑

j=1

Jij x
t
j


 (D1)

where the xt
i represents the state of the ith neuron at time t and F(·) denotes an output function.

The retrieval state converges to some limit cycle with l steps. We introduced the Poincaré map
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to get the states every l steps in the steady state. The periodic state can be transformed into
a stable state by using this map. Hence, we can discuss the properties of a stability of limit
cycles.

Let us consider the case of convergence to periodic states of the limit cycle retrieval. We
assume xt

i = xt−l
i in (D1). The overlap between the µth memory pattern ξνµ of the νth limit

cycle and the network state x is defined as

mt
νµ = 1

N

N∑
i=1

ξ
νµ

i xt
i . (D2)

The dynamics (D1) can be rewritten as

xt+1
i = F

(
ht

i

)
(D3)

ht
i =

N∑
j=1

Jij x
t
j =

p/l∑
ν=1

∑
µ

ξ
νµ+1
i mt

νµ (D4)

where ht
i is a local field. Now let us consider the case to retrieve the first limit cycle

ξ1µ, µ ∈ {1, . . . , l}. We assume the memorized pattern of another limit cycle ξνµ, ν 
= 1,
does not have a finite overlap. We consider retrieval solutions in which mt

1µ ∼ O(1) and

mt
νµ ∼ O(1/

√
N), ν � 2. We assume that the components xi of the equilibrium state x are

independent of the unit number i in the limit N → ∞. It is necessary to assume that the
self-averaging property holds too so that the site average can be replaced by an average over
the random patterns and random variable x. In this situation the overlap mt

νµ need not be a
random variable.

mt
νµ = m̄t

νµ + Utm
t−1
νµ (D5)

m̄t
νµ = 1

N

∑
i

ξ
ν,µ

i x
t(νµ)

i (D6)

Ut = 1

N

∑
i

x
′t (νµ)

i (D7)

where

x
t(νµ)

i = F


 ∑

(ν ′µ′)
=(ν,µ−1)

ξ ν ′µ′+1mt−1
ν ′,µ′


 (D8)

x
′t (νµ)

i = F ′


 ∑

(ν ′µ′)
=(ν,µ−1)

ξ ν ′µ′+1mt−1
ν ′µ′


 . (D9)

By applying (D5) repeatedly, we obtain

mt
νµ = m̄t

νµ + Utm̄
t−1
νµ−1 + UtUt−1m̄

t−2
νµ−2 + · · ·

+ UtUt−1 · · · Ut−l+2m̄
t−l+1
νµ−l+1 + UtUt−1 · · · Ut−l+1m

t−l
νµ−l . (D10)

Since the retrieval state is assumed to be steady, i.e. xt−l
i = xt

i , the identity mt−l
νµ−l = mt

νµ

holds. Therefore the overlap becomes

mt
νµ =

(
1 −

l−1∏
k=0

Ut−k

)−1 [
m̄t

νµ +
l−1∑
k=1

k−1∏
k′=0

Ut−k′m̄t−k
νµ−k

]
. (D11)
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Substituting (D6) into (D11), we obtain

mt
νµ = 1

N

(
1 −

l−1∏
k=0

Ut−k

)−1

 N∑

j=1

ξ
νµ

j x
t(νµ)

j

+
N∑

j=1

ξ
ν,µ

j x
t(νµ)

j

l−1∑
k=1

(
k−1∏
k′=0

Ut−k′

)
N∑

j=1

ξ
ν,µ−k

j x
t−k(νµ−k)

j


 (D12)

Replacing ξ
1µ

i → ξ
µ

i and mt
1µ → mt

µ, and substituting (D12) into (D4), the local field ht
i can

be rewritten as

ht
i =

∑
µ

ξ
µ+1
i mt

µ +
1

N

(
1 −

l−1∏
k=0

Ut−k

)−1

αN/l∑

ν�2

l∑
µ=1

ξ
νµ+1
i ξ

νµ

i x
t(νµ)

i

+
l−1∑
k=0

(
k−1∏
k′=0

Ut−k′

)
αN/l∑
ν�2

l∑
µ=1

ξ
νµ+1
i ξ

νµ−k

i x
t−k(νµ−k)

i




+
1

N

(
1 −

l−1∏
k=0

Ut−k

)−1

αN/l∑

ν�2

l∑
µ=1

N∑
j 
=i

ξ
νµ+1
i ξ

νµ

j x
t(νµ)

j

+
l−1∑
k=0

(
k−1∏
k′=0

Ut−k′

)
αN/l∑
ν�2

l∑
µ=1

N∑
j 
=i

ξ
νµ+1
i ξ

νµ−k

j x
t−k(νµ−k)

j


 . (D13)

The first term in (D13) is regarded as the signal. The second and the third terms are regarded
as the mean and the variance of the crosstalk noise, respectively. In the second term, if the
suffix is µ + 1 ≡ µ − k ( mod l), ξ

νµ+1
i and ξ

νµ−k

j are represented by the same patterns. Since

these terms consist of uncorrelated random variables of the order O(1/
√

N), the other terms
in the second term can be omitted. The term of k = l − 1 is the only one remaining of the
terms with k ∈ {0, . . . , l − 1}. Hence we can estimate the second term as

1

N

(
l−2∏
k′=0

Ut−k′

) (
1 −

l−1∏
k′=0

Ut−k′

)−1 αN/l∑
ν�2

l∑
µ=1

ξ
νµ+1
i ξ

νµ−l+1
j x

t−l+1(νµ−l+1)

j

= α

(
l−2∏
k′=0

Ut−k′

) (
1 −

l−1∏
k′=0

Ut−k′

)−1

xt+1
i . (D14)

We assume that the third term is normally distributed with mean 0 and variance σ 2
t because of

the independence of x
t(νµ)

i and ξ
νµ

i . The variance σ 2
t of the crosstalk noise is estimated as

σ 2
t = α

(
1 −

l−1∏
k′=0

Ut−k′

)−2

qt +

l−1∑
k=1

(
k−1∏
k′=0

Ut−k′

)2

qt−k


 (D15)

where

qt−k = 1

N

N∑
j 
=i

(
xt−k

j

)2
. (D16)

The local field hi is obtained by setting zi ∼ N(0, 1) in (D13),

hi =
s∑

µ=1

ξ
µ+1
i mt

µ + α

(
l−2∏
k′=0

Ut−k′

) (
1 −

l−1∏
k′=0

Ut−k′

)−1

xt+1
i + σtzi . (D17)
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The self-averaging property is assumed. Replacing xi → Y and ξ
µ

i → ξµ, we obtain the
macroscopic equations as follows:

Y t+1(ξ 1, . . . , ξ l; z) = F


 l∑

µ=1

ξµ+1mt
µ + �Y t+1(ξ 1, . . . , ξ l; z) + σtz


 (D18)

mt+1
µ =

∫ ∞

−∞
Dz〈〈ξµY t+1(ξ 1, . . . , ξ l; z)〉〉 (D19)

qt+1 =
∫ ∞

−∞
Dz〈〈Y t+1(ξ 1, . . . , ξ l; z)

2〉〉 (D20)

Ut+1 = 1

σ t

∫ ∞

−∞
Dz z〈〈Y t+1(ξ 1, . . . , ξ l; z)〉〉 (D21)

σ 2
t+1 = α

(
1 −

l−1∏
k′=0

Ut−k′

)−2 [
qt +

l−1∑
k=1

(
k−1∏
k′=0

Ut−k′

)
qt−k

]
(D22)

� = α

(
l−2∏
k′=0

Ut−k′

) (
1 −

l−1∏
k′=0

Ut−k′

)−1

(D23)

Now let us consider the case that the state of memory retrieval is periodic. We can set

mt
ν = mδνt qt = q Ut = U σt = σ (t = 1, . . . , l) (D24)

where δνt denotes Kronecker’s delta. Finally, we obtain the macroscopic equations as follows:

Y (ξ t+1; z) = F(ξ t+1m + �Y(ξ t+1; z) + σz) (D25)

m =
∫ ∞

−∞
Dz〈〈ξ t+1Y (ξ t+1; z)〉〉 (D26)

q =
∫ ∞

−∞
Dz〈〈Y (ξ t+1; z)

2〉〉 (D27)

U = 1

σ

∫ ∞

−∞
Dz z〈〈Y (ξ t+1; z)〉〉 (D28)

σ 2 = α
1 − U 2l

(1 − Ul)2(1 − U 2)
q (D29)

� = αUl−1

1 − Ul
. (D30)

Setting F(·) = sgn (·) and using the Maxwell rule [2], we obtain (50)–(52) as follows:

m = erf

(
m√
2αρ

)
(D31)

U =
√

2

παρ
e− m2

2αρ (D32)

ρ = 1 − U 2l

(1 − U 2)(1 − Ul)2
(D33)

where σ 2 = αρq, q = 1 and sgn (·) denotes the sign function (sgn (x) = 1 for x � 0,−1
for x < 0). Thus, we find that these stationary state equations of the order parameters given
by the signal-to-noise analysis (SCSNA) are equivalent to those of the path-integral analysis
(50)–(52).
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