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Abstract

We evaluate the typical performance of irregular low-density generator-matrix
(LDGM) codes, which is defined by sparse matrices with arbitrary irregular
bit degree distribution and arbitrary check degree distribution, for lossy
compression. We apply the replica method under a one-step replica symmetry
breaking (1RSB) ansatz to this problem.

PACS numbers: 89.90.+n, 02.50.−r, 05.50.+q, 75.10.Hk

1. Introduction

The channel coding can be considered as the dual problem of lossy source coding in rate-
distortion theory [1, 2]. Matsunaga and Yamamoto showed that it is possible to approach the
binary rate-distortion bound using LDPC codes [3]. In recent years, the lossy source coding
problem based on low-density generator-matrix (LDGM) codes has been widely investigated.

This scheme can attain high performance very close to the Shannon bound, however a
combinatorial optimization problem needs to be solved to obtain optimal source coding. Some
practical encoding algorithms are proposed for this scheme, e.g., a belief-propagation-based
encoder proposed by Murayama [4] and a survey-propagation-based encoder proposed by
Wainwright and Maneva [5].

The performance of this scheme is also explored using various approaches. Murayama
and Okada applied replica methods to evaluate performance of LDGM codes defined by
regular sparse matrices for lossy compression [6]. Ciliberti et al have used the cavity method
to evaluate check-regular LDGM performance [7, 8]. On the other hand, Martinian and
Wainwright derived rigorous upper bounds on the effective rate-distortion function of LDGM
codes for the binary symmetric source [9]. Dimakis et al derived lower bounds for check-
regular LDGM codes [10, 11].

With respect to irregular LDGM codes analyzed so far, elements of a reproduced message
are given by exactly K elements chosen at random from a codeword. This implies that previous
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analyses treat only the case where a bit degree distribution is Poissonian. An irregular bit and
check degree distributions of a generator matrix are not optimized for lossy source coding.
The goal of this paper is to evaluate how typical performance of irregular LDGM codes for
lossy compression depends on a bit degree distribution and a check degree distribution.

2. Background

Let us first provide the concepts of the rate-distortion theory [1]. Let x be a binary i.i.d. discrete
source which takes in a source alphabet X = {0, 1} with P[x = 0] = P[x = 1] = 1/2, where
P represents the probability of its argument. A source message of M random variables,
x = t (x1, . . . , xM) ∈ XM , is compressed into a shorter expression, where the operator t

denotes the transpose. The encoder describes the source sequence x ∈ XM by a codeword
z = F(x) ∈ XN . The decoder represents x by a reproduced message x̂ = G(z) ∈ XM . Note
that M represents the length of a source sequence, while N(<M) represents the length of a
codeword. The code rate is R = N/M . The distortion between single letters is measured by
the Hamming distortion defined by

d(x, x̂) =
{

0, if x = x̂,

1, if x �= x̂,
(1)

and the distortion between M-bit sequences x ∈ XM and x̂ ∈ XM is measured by the averaged
single-letter distortion as d(x, x̂) = 1

M

∑M
μ=1 d(xμ, x̂μ). This results in the probability of error

distortion, since E[d(x, x̂)] = P[x �= x̂], where E represents the expectation. The distortion
associated with the code is defined as D = E[d(x, x̂)], where the expectation is over the
probability distribution on XM × XM . A rate distortion pair (R,D) is said to be achievable
if there exists a sequence of rate distortion codes (F,G) with E[d(x, x̂)] � D in the limit
M → ∞. The rate distortion function R(D) is the infimum of rates R such that (R,D) is in
the rate distortion region of the source for a given distortion D. The rate-distortion function of
a Bernoulli(1/2) i.i.d. source is given by

R(D) = 1 − h2(D), (2)

where h2(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function.

3. Lossy compression scheme

A source message of M random variables, x ∈ XM , is compressed into a shorter expression,
where the operator t denotes the transpose. The encoder describes the source sequence
x ∈ XM by a codeword z = F(x) ∈ XN . The decoder represents x by a reproduced message
x̂ = G(z) ∈ XM . The code rate is R = N/M � 1.

Using a given M × N sparse matrix A = (aμi) ∈ {0, 1}M×N , the decoder is defined as

G(z) = Az (mod 2). (3)

The encoding is represented by

F(x) = argmin
ẑ∈XN

d(x,G(ẑ)), (4)

where d is the distortion measure. In this paper, we use the Hamming distortion. Although the
definition means that a computational cost of the encoding is of O(eN), we can utilize some
suboptimal algorithms based on message passing to encode [4, 5].
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4. Analysis

To simplify the calculations, we first introduce a simple isomorphism between the additive
Boolean group ({0, 1},⊕) and the multiplicative Ising group ({+1,−1},×) defined by
J × Ĵ = (−1)x⊕x̂ , where J, Ĵ ∈ {+1,−1} = J and x, x̂ ∈ {0, 1} = X . Hereafter, we
use the following Ising (bipolar) representations: the Ising source message J ∈ JM , the
Ising reproduced message Ĵ ∈ JM and the Ising codeword ξ ∈ J N . The source bit can be
described as a random variable with the probability:

PJ (J ) = 1
2δ(J − 1) + 1

2δ(J + 1), (5)

where δ(x) denotes Dirac’s delta function. The μth element of the Ising reproduced message
Ĵ μ is given by products of the elements of the tentative Ising codeword s ∈ J N :

Ĵ μ =
∏

i∈L(μ)

si, (6)

where L(μ) = {i|aμi = 1,A = (aμi)}.
The matrix A has Kμ nonzero elements in the μth row and Ci nonzero elements in the ith

column. We consider the source length and the codeword length to be infinite, while code rate
R is kept finite. The parameters K1, . . . , KM and C1, . . . , CN are usually of O(N0), therefore
the matrix A becomes very sparse. In densely constructed cases, we also assume that these
parameters are not of O(N0) but K,C1, . . . , CN � N holds. Counting the number of nonzero
elements in the matrices leads to K1 + · · · + KM = C1 + · · · + CN . The code rate is therefore
R = K̃/C̃, where K̃ = 1

N

∑M
μ=1 Kμ and C̃ = 1

N

∑N
i=1 Ci . Code constructions are described

by the connectivity parameter Dμ

i1,...,iKμ
∈ {0, 1} which specifies a set of indices i1, . . . , iKμ

corresponding to nonzero elements in the μth row of the sparse matrix A. The connectivity
parameter is defined by

Dμ

i1,...,iKμ
=

{
1, if {i1, . . . , iKμ

} = L(μ)

0, otherwise.
(7)

An ensemble of codes is generated as follows. (i) Sets of {K1, . . . , KM} and {C1, . . . , CN }
are sampled independently from an identical distributions PK(K) and PC(C), respectively.
(ii) The connectivity parameters Dμ

i1,...,iKμ
are generated such that

M∑
μ=1

∑
〈i1=i,i2,...,iKμ 〉

Dμ

i,i2,...,iKμ
= Ci, (8)

where
∑

〈i1=i,i2,...,iKμ 〉 denote the summation over {(i2, . . . , iKμ
) ∈ {1, . . . , N}Kμ−1|i2 < · · · <

iKμ
, i2 �= i, . . . , iKμ

�= i}.
To analyze typical performance of rate-compatible LDGM codes for lossy compression,

we apply a analytical method similar to [6, 12–15]. The Hamming distortion d(J , Ĵ) becomes
d(J , Ĵ) = 1

2 − 1
2M

∑M
μ=1 Jμ

{∏
i∈L(μ) si

}
, since J , Ĵ ∈ JM . Using the connectivity parameter

Dμ

i1,...,iKμ
, we can rewrite this Hamming distortion in the form:

d(J , Ĵ) = 1

2
− 1

2M

M∑
μ=1

∑
〈i1,...,iKμ 〉

Dμ

i1,...,iKμ
Jμsi1 · · · siKμ

, (9)

where
∑

〈i1,...,iKμ 〉 denote the summation over {(i1, . . . , iKμ
) ∈ {1, . . . , N}Kμ |i1 < · · · < iKμ

}.
We here define the Hamiltonian

H(s,J) = Md(J , Ĵ(s)), (10)
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to explore typical performance. The free energy is calculated from the partition function
Z(β) = ∑

s∈J N exp[−βH(s,J)]. From the free energy, we can obtain a distortion between
an original message and a reproduction message D for a fixed code rate R. We follow the
calculation of [6, 12, 16–19].

4.1. Replica symmetric solution

We first assume the replica symmetry (RS). Using the replica symmetric partition function
ZRS(β), we find the replica symmetric free energy as

fRS(β) = − 1

βnM
ln EA,J [ZRS(β)n] (11)

= 1

2
− 1

β
extr
π,π̂

[
ln cosh

β

2
− K̄

∫ 1

−1
dx π(x)

∫ 1

−1
dx̂ π̂ (x̂) ln(1 + xx̂)

+
∑
K

PK(K)

(
K∏

k=1

∫ 1

−1
dxk π(xk)

)
EJ

[
ln

(
1 +

(
tanh

βJ

2

)
K∏

k=1

xk

)]

+
K̄

C̄

∑
C

PC(C)

(
C∏

c=1

∫ 1

−1
dx̂c π̂ (x̂c)

)
ln

( ∑
σ=±1

C∏
c=1

[1 + σ x̂c]

)]
, (12)

where the parameters are determined by the saddle-point equations obtained by calculating
functional variations:

π(x) =
∑
C

C

C̄
PC(C)

(
C−1∏
c=1

∫ 1

−1
dx̂c π̂ (x̂c)

)
δ

(
x − tanh

[
C−1∑
c=1

tanh−1 x̂c

])
, (13)

π̂(x̂) =
∑
K

K

K̄
PK(K)

(
K−1∏
k=1

∫ 1

−1
dxk π(xk)

)
EJ

[
δ

(
x̂ −

(
tanh

βJ

2

)
K−1∏
k=1

xk

)]
, (14)

with K̄ = ∑
K KPK(K) and C̄ = ∑

C CPC(C) (see the outline of the derivation in appendix
A). We can obtain the distortion, which is reproduction errors, uRS(β) = ∂[βfRS(β)]/∂β and
the replica symmetric entropy sRS(β) = β[uRS(β) − fRS(β)].

For arbitrary PK(K), PC(C) and β, π(x) = δ(x) and π̂(x̂) = δ(x̂) are always solutions
of the saddle-point equations (13) and (14). These correspond to the paramagnetic solution.
The paramagnetic free-energy, internal energy and entropy are given by fPARA(β) =
1
2 − 1

β
ln cosh β

2 − R
β

ln 2, uPARA(β) = 1
2 − 1

2 tanh β

2 and sPARA(β) = ln cosh β

2 − β

2 tanh β

2 +
R ln 2, respectively. However, this RS solution takes negative entropy while R ln 2 <
β

2 tanh β

2 − ln cosh β

2 . Especially, when the inverse temperature β → ∞, the RS entropy
becomes sRS(β) = (R − 1) ln 2. This means we have to look for the true solution beyond the
RS ansatz for R � 1.

4.2. One-step replica symmetry breaking solution

The replica symmetric breaking (RSB) theory for sparse systems is still under development
[20–25]. Therefore, as a first approach we introduce the frozen RSB to produce a solution
with non-negative entropy [6, 12, 13]. The frozen RSB method is a limited version of full
one-step RSB (1RSB) and includes the RS method as a special case. In this 1RSB scheme, n
replicas are divided into n/m groups which contain m replicas each. The symmetry breaking
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Figure 1. Example of numerical solutions for finite connectivity systems with PK(K) = δK,2
and PC(C) = P̃C(C). (a) Rate distortion performance for r = 0.3, 0.4, . . . , 0.9 (squares). The
solid line denotes the rate distortion performance in large K̄ and C̄ limits, which coincides with
the Shannon bound. (b) Inverse temperature βg for r = 0.3, 0.4, . . . , 0.9 (squares). The solid line
denotes the inverse temperature βc , which is defined by sPARA(βc) = 0.

parameter m was found to be m = βg/β, where βg is an inverse temperature at which the
replica symmetric entropy vanishes, i.e., sRS(βg) = 0 (see appendix B). This 1RSB scheme
gives the exact solution for the random energy model (REM) [6, 26]. For β > βg , the 1RSB
free energy becomes f1RSB(β) = fRS(βg). It can be regarded as a constant with respect to the
inverse temperature β. We assume that the 1RSB scheme is enough good to approximate the
solution even if K̄ and C̄ are finite. Under this assumption, the distortion D is simply given
by D = limβ→∞ u1RSB(β) = uRS(βg).

5. Results and discussion

5.1. Basic results

In large K̄ and C̄ limit, there are no other solutions except π(x) = δ(x) and π̂(x̂) = δ(x̂) for
the saddle-point equations. We then found the relationship

R = 1 − h2(D), (15)

from sRS(βg) = ln cosh βg

2 − βg

2 tanh βg

2 + R ln 2 = 0 and D = uRS(βg) = 1
2 − 1

2 tanh βg

2 .
In finite K̄ and C̄ cases, the solutions π(x) = δ(x) and π̂(x̂) = δ(x̂) also exist, but

these are no longer stable [6]. We have to solve equations (13) and (14) numerically. We
choose the proper value of the inverse temperature βg which gives sRS(βg) = 0 by using
the numerical results of the saddle-point equations. Since the distortion D can be evaluated
from D = uRS(βg), we can also obtain the relation between the code rate R = K̄/C̄ and the
distortion D in the finite connectivity systems.

As one of the simplest examples to treat the arbitrary code rate, we here introduce degree
distributions PK(K) = δK,2 and PC(C) = 7r−2

5r
δC,2 + 2(1−r)

5r
δC,7(≡ P̃C(C)), which are valid

for 2
7 � r � 1. Here, δm,n denotes Kronecker’s delta taking 1 if m = n and 0 otherwise.

In this case, we can adjust the code rate R(= r) via the parameter r. We apply the Monte
Carlo integration to solve the saddle-point equations. Figure 1(a) shows the rate-distortion
performance of this system. Figure 1(b) shows the inverse temperature βg , which is a root of
the replica symmetric entropy sRS(βg) = 0.
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(a) PK (K) = δK,2, PC (C) = δC,4
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(b) PK (K) = δK,2, PC (C) = PC (C)

0

50

100

150

200

-1 -0.5 0 0.5 1

π(x)

0

50

100

150

200

-1 -0.5 0 0.5 1

π(x)^ ^

(c) PK (K) = PK (K), PC (C) = δC,4

Figure 2. Snapshots of the order functions π(x) and π̂(x̂). (a) A check-regular and bit-irregular
case, (b) a regular case, and (c) a check-irregular and bit-regular case.

5.2. Some typical irregular constructions

We next apply some degree distributions as typical examples. It should be noted that these
distributions discussed here are not optimized but heuristically chosen. All three examples
have the code rate R = 1/2.

Firstly, we consider a regular case characterized as PK(K) = δK,2 and PC(C) = δC,4.
Figure 2(a) shows stable solutions π(x) and π̂(x̂) of the saddle-point equations for this case.
It can be confirmed that the functions π(x) and π̂(x̂) are broad in shape. In this case, the
distortion becomes D = 0.116. The Shannon bound is DSB = 0.1100.

Secondly, we treat a check-regular and bit-irregular case whose degree distributions are
defined as PK(K) = δK,2 and PC(C) = PC(C), where

PC(C) = 0.04δC,1 + 0.15δC,2 + 0.22δC,3 + 0.22δC,4 + 0.18δC,5 + 0.11δC,6 + 0.08δC,7. (16)

This PC(C) is a rough approximation of the Poissonian distribution e−λλC−1/(C − 1)! with
λ = 3. The distortion is D = 0.115 for this case. It represents an ensemble which have at least
one non-zero element in each row. In the check-regular case, when we choose the non-zero
elements randomly, there exist some columns whose elements are all zero. In such a situation,
the code rate essentially becomes small.
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Lastly, for a check-irregular and bit-regular case, we apply PK(K) = PK(K) and
PC(C) = δC,4, where

PK(K) = 0.36δK,1 + 0.36δK,2 + 0.20δK,3 + 0.08δK,4. (17)

This PK(K) is a rough approximation of the Poissonian distribution e−λλK−1/(K − 1)! with
λ = 1. The reason why we consider this distribution is same to PC(C). In this case, the
distortion becomes D = 0.115. These three kinds of distributions give almost same distortion.

Figures 2(b) and (c) show stable solutions for these irregular cases. It can be confirmed
that the distribution π(x) and π̂(x̂) become a little bit narrow than the regular case. It is
considered that the distortion can become small due to this.

6. Conclusions

We evaluate typical performance of LDGM codes with irregular bit and check degree
distributions by applying the replica method under 1RSB ansatz. Our result shows that
we can use an arbitrary code rate. It might be possible to investigate suboptimal irregular
degree distributions by using the hill-climbing approach similar to the case of the density
evolution [27, 28].

In the practical point of view, it must be important to evaluate some polynomial time
encoding algorithms with arbitrary degree distributions. It should be noted that the analysis
addressed here is based on an exact calculation of the encoder’s definition. Therefore, it can
be considered that the distortion obtained by this analysis provides the theoretical limit for
given check and bit degree distributions.

Recently, the cavity method was introduced to evaluate the typical performance [7]. Since
the cavity method does not need the replica trick, it might be able to avoid some assumptions.
Applying the cavity method to this problem is also important and is a part of our future
work.
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Appendix A. Derivation of replica symmetric free energy

We assume that the event Dμ

i1,...,iKμ
= 1 occurs independently for every row μ. We then have

P
(
Dμ

i1,...,iKμ
= 1

) = pμ, (A.1)

P
(
Dμ

i1,...,iKμ
= 0

) = 1 − pμ, (A.2)

where P(· · ·) denotes the probability of the event (· · ·) and pμ = (
N
Kμ

)−1 � Kμ!/NKμ .
Introducing the constraint concerning the column (8) by using Dirac’s delta function, the
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ensemble average over the codes is represented as

EA[(· · ·)] =
( ∑

{Kμ}

M∏
μ=1

PK(Kμ)

)(∑
{Ci }

N∏
i=1

PC(Ci)

)

× 1

ND
ED

[{
N∏

i=1

δ

(
M∑

μ=1

∑
〈i1=i,i2,...,iKμ 〉

Dμ

i1=i,i2,...,iKμ
;Ci

)}
(· · ·)

]
,

=
( ∑

{Kμ}

M∏
μ=1

PK(Kμ)

)(∑
{Ci }

N∏
i=1

PC(Ci)

)

× 1

ND
ED

[{
N∏

i=1

∮
dZi

2π i

1

Z
Ci+1
i

N∏
μ=1

∏
〈i1=i,i2,...,iKμ 〉

Z
Dμ

i1=i,i2 ,...,iKμ

i

}
(· · ·)

]
, (A.3)

where ED denotes the average over the connectivity parameter. Observing that∑
〈i1,...,iKμ 〉(· · ·) = 1

Kμ!

(∑
i (· · ·)

)Kμ for large N, the normalization constant ND is given by

ND = ED

[
N∏

i=1

δ

(
M∑

μ=1

∑
〈i1=i,i2,...,iKμ 〉

Dμ

i1=i,i2,...,iKμ
;Ci

)]
= (NC̄)!

NNC̄
∏N

i=1 Ci!
. (A.4)

To evaluate the free energy, we calculate the replicated partition function

EA,J [Z(β)n] = e− nMβ

2 EA,J

[ ∑
s1,...,sn

exp

[
β

2

M∑
μ=1

∑
〈i1,...,iKμ 〉

Dμ

i1,...,iKμ
Jμ

n∑
α=1

sα
i1

· · · sα
iKμ

}]]

= e− nMβ

2

( ∑
{Kμ}

M∏
μ=1

PK(Kμ)

)( ∑
{Ci }

N∏
i=1

PC(Ci)

)

× 1

ND

(
N∏

i=1

∮
dZi

2π i

1

Z
Ci+1
i

)
M∏

μ=1

(
pμ

∑
〈i1,...,iKμ 〉

(
cosh

β

2

)n

Zi1 · · · ZiKμ

+ pμ

n∑
m=1

∑
〈α1,...,αm〉

(
cosh

β

2

)n

EJ

[(
tanh

βJ

2

)m
]

×
∑

〈i1,...,iKμ 〉

(
Zi1s

α1
i1

· · · sαm

i1

) · · · (ZiKμ
s
α1
iKμ

· · · sαm

iKμ

))
. (A.5)

We next introduce order parameters qα1,...,αm
and q0, defined by

qα1,...,αm
= 1

N

N∑
i=1

Zis
α1
i · · · sαm

i , (A.6)

q0 = 1

N

N∑
i=1

Zi. (A.7)
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Using the Fourier expression of the Dirac delta function, we find

EA,J [Z(β)n] = e− nMβ

2

(∫
dq0 dq̂0

2π

)( ∏
〈α1〉

∫
dqα1 dq̂α1

2π

)
· · ·

( ∏
〈α1,...,αn〉

∫
dqα1,...,αn

dq̂α1,...,αn

2π

)

×
( ∑

{Kμ}

M∏
μ=1

PK(Kμ)

)( ∑
{Ci }

N∏
i=1

PC(Ci)

)
1

ND

(
N∏

i=1

∮
dZi

2π i

1

Z
Ci+1
i

)

× exp

[
−N

{
q0q̂0 + · · · +

∑
〈α1,...,αn〉

qα1,...,αn
q̂α1,...,αn

}

+ q̂0

N∑
i=1

Zi + · · · +
∑

〈α1,...,αn〉
q̂α1,...,αn

N∑
i=1

Zis
α1
i · · · sαn

i

]

×
M∏

μ=1

(
T0q

Kμ

0 +
n∑

m=1

∑
〈α1,...,αm〉

Tm(qα1,...,αm
)Kμ

)
, (A.8)

with Tm = (
cosh β

2

)n
EJ

[(
tanh βJ

2

)m]
. To proceed further, we introduce the replica-symmetric

assumption:

qα1,...,αm
= q

∫ 1

−1
dx π(x)xm, (A.9)

q̂α1,...,αm
= q̂

∫ 1

−1
dx̂ π̂ (x̂)x̂m, (A.10)

where π(x) � 0, π̂(x̂) � 0 and
∫ 1
−1 dx π(x) = ∫ 1

−1 dx̂ π̂ (x̂) = 1. This assumption means that
the order parameters depend only on the number of indices. We write the replica symmetric
partition function as ZRS(β). Using the integral form of Dirac’s delta function, we obtain

EA,J [ZRS(β)n] = extr
π,π̂,q,q̂

e− nMβ

2

ND

( ∑
{Kμ}

M∏
μ=1

PK(Kμ)

)(∑
{Ci }

N∏
i=1

PC(Ci)

)

×
(

N∏
i=1

{
q̂Ci

Ci!

(
Ci∏

c=1

∫ 1

−1
dx̂c π̂ (x̂c)

)( ∑
σ=±1

Ci∏
c=1

(1 + σ x̂c)

)n})

× exp

[
−Nqq̂

∫ 1

−1
dx π(x)

∫ 1

−1
dx̂ π̂ (x̂)(1 + xx̂)n

]

×
M∏

μ=1

(
qKμ

(
cosh

β

2

)n
(

Kμ∏
k=1

∫ 1

−1
dxk π(xk)

)
EJ

[(
1 +

(
tanh

βJ

2

) Kμ∏
k=1

xk

)n]
. (A.11)

Finally, substituting this into (11) and taking the limit n → 0, we arrive at (12). The saddle-
point equations (13) and (14) are simply obtained as the extremization condition of (12).

Appendix B. One-step replica symmetry breaking solution

We follow the calculation of the [13]. We assume that the space of configuration is divided in
n/m groups with m identical configurations in each

1

N
sα · sβ =

{
1, if α and β are in the same group

q, otherwise.
(B.1)

9
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Using this ergodicity breaking assumption, the 1RSB replicated partition function becomes

EA,J [Z1RSB(β)n]|(B.1) = EA,J

[(∑
s

e−βH(s,J)

)n]∣∣∣∣∣
(B.1)

= EA,J

[(∑
s

e−βmH(s,J)

)n/m]

= EA,J [ZRS(βm)n/m]. (B.2)

Then we obtain the 1RSB free energy as

f1RSB(β) = − 1

β
EA,J [ln Z1RSB(β)]

= − 1

β

(
∂

∂n
EA,J [Z1RSB(β)n]

)∣∣∣∣∣
n=0

= − 1

βm

(
∂

∂(n/m)
EA,J [ZRS(βm)n/m]

)∣∣∣∣∣
n/m=0

= − 1

βm
EA,J [ln ZRS(βm)]

= fRS(βm). (B.3)

The symmetry breaking parameter m should be determined to extremize the 1RSB free energy
as

∂

∂m
f1RSB(β) = 0. (B.4)

The left-hand side of this condition becomes
∂

∂m
f1RSB(β) = − ∂

∂m

1

βm
EA,J [ln ZRS(βm)]

= − 1

m

(
∂[EA,J [ln ZRS(βm)]]

∂(βm)
− 1

βm
EA,J [ln ZRS(βm)]

)

= 1

m

(
∂[(βm)fRS(βm)]

∂(βm)
− fRS(βm)

)

= 1

βm2
sRS(βm). (B.5)

Namely, the condition (B.4) is equivalent to sRS(βm) = 0. Therefore, the symmetry breaking
parameter is given by m = βg/β with sRS(βg) = 0.
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