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Synapse efficiency diverges due to synaptic pruning following overgrowth
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In the development of the brain, it is known that synapses are pruned following overgrowth. This pruning
following overgrowth seems to be a universal phenomenon that occurs in almost all areas—visual cortex,
motor area, association area, and so on. It has been shown numerically that the synapse efficiency is increased
by systematic deletion. We discuss the synapse efficiency to evaluate the effect of pruning following over-
growth, and analytically show that the synapse efficiency diverge3(Ha c|) at the limit where connecting
ratec is extremely small. Under a fixed synapse number criterion, the optimal connecting rate, which maxi-
mizes memory performance, exists.
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I. INTRODUCTION correlation-type associative memory modgl5]. They
pointed out that a memory performance, which is stored pat-
In this paper, we analytically discuss synapse efficiency td€rn number per synapse number, is maximized by system-

evaluate effects of pruning following overgrowth during atic deletion that cuts synapses that are lightly weighted.

brain development, within the framework of autocorrelation-HOWever, while it is qualitatively obvious that synapse effi-

type associative memory. ciency and memory performance are increased by a system-
) L . atic deletion, we also need to consider the increase of syn-
Because this pruning following overgrowth seems to be

. | oh h i al I X pse efficiency quantitatively.
universal phenomenon that occurs in almost all areas—visual' |, this paper, we quantitatively compare the effectiveness

cortex, motor area, association area, and s¢lerl0l—we  of systematic deletion to that with random deletion on the
discuss the meaning of its function from a universal view-pasis of an autocorrelation-type associative memory model.
point rather than in terms of particular properties in eachin this model, one neuron is connected to other neurons with
area. Of course, to discuss this phenomenon as a universalproportion ofc, wherec is called the connecting rate. Sys-
property of a neural network model, we need to choose atematic deletion is considered as a kind of nonlinear correla-
appropriate model. tiqn learning[16]. At thga Ijmit where the number of neurons
Artificial neural network models are roughly classified N iS extremely large, it is known that random deletion and

into two types: feed forward models and recurrent modelsnonlinear correlation learning can be transformed into corre-
Various learning rules are applied to the architectures O[atlon learning with synaptic noisd4,1§. These two types

these models, and correlation learning corresponding to th%;c deletion, systematic and random, are strongly related to

Hebb rule can be considered a prototype of any other learr! ultiplicative synaptic noise. First, we investigated the de-
) . P yPpe y endence of storage capacity on multiplicative synaptic
ing rules. For instance, correlation learning can be regarde

) Lo -9 ““Hoise. At the limit where multiplicative synaptic noise is ex-
as a first-order approximation of the orthogonal prOJectlontreme|y large, we show that storage capacity is inversely

matrix, because the orthogonal projection matrix can be €xaroportional to the variance of the multiplicative synaptic
panded by correlation matricgs1]. In this respect, we can pojse. From this result, we analytically derive that the syn-
naturally regard a correlation-type associative memorygpse efficiency in the case of systematic deletion diverges as
model as one prototype of the neural network models of the(|In c|) at the limit where the connecting ratés extremely
brain. For example, Amiét al. discussed the function of the small. We also show that the synapse efficiency in the case of
column of anterior ventral temporal cortex by means of asystematic deletion become$ir2c| times as large as that of
model based on correlation-type associative memory modebndom deletion.
[12,13. Also, Sompolinsky discussed the effect of dilution.  In addition to such fixed neuron number criterion as the
He assumed that the capacity is proportional to the numbesynapse efficiency, a fixed synapse number criterion could be
of remaining bonds, and pointed out that a synapse efficiencliscussed. At the synaptic growth stage, it is natural to as-
of diluted network, which is storage capacity per a connectsume that metabolic energy resources are restricted. When
ing rate, is higher than a full connected network's ¢h4].  metabolic energy resources are limited, it is also important
Chechiket al. discussed the significance of the function of that the effect of synaptic pruning is discussed under limited
the pruning following overgrowth on the basis of a synapse number. Under this criterion, the optimal connecting
rate, which maximizes memory performance, exists. These
optimal connecting rates are in agreement with the computer
*Electronic address: mimura@kobe-kosen.ac.jp simulation results given by Cheché al. [15].
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Il. MODEL Sa

Sompolinsky discussed the effects of synaptic noise and An= J(1-a?)’ ©®)

nonlinear synapse by means of the replica methbd].
However, symmetry of the synaptic connectiahs=J;; is  which measures the relative strength of the noise and we call
required in the replica method since the existence of théhe parametedA? the variance of the additive synaptic noise.
Lyapunov function is necessary. Therefore, there was a probFherefore, we define the probability to generate the additive
lem that the symmetry regarding synaptic noise had to bgynaptic noises;; as
assumed in the Sompolinsky theory. To avoid this problem,
Okadaet al. discussed additive synaptic noise, multiplicative J2
synaptic noise, random synaptic deletion, and nonlinear syn- 6ij~N 0,—22
apse by means of the self-consistent signal-to-noise analysis N(1-a%)
(SCSNA [16]. They showed that additive synaptic noise,
random synaptic deletion, nonlinear synapse can be tran%e
formed into multiplicative synaptic noise.

Here, we discuss the synchronous dynamics as

Ai): i) = 0ji - (7)

In the case of multiplicative synaptic noise, synaptic con-
ctions are constituted as
1+e;

o= 7 M "
NI 7 2 (&—a)(g—a), ®

D

N
(2 Jijxj+h,

J# where g;; is multiplicative synaptic noise. The symmetric
multiplicative noises;; and ¢;; are generated according to

whereF is the response functiom; is the output activity of the probability,

neuroni, and —h is the threshold of each neuron. Every
componentéf in a memorized patterg is an independent gijNN(olAfﬂ), eij=¢ji, (9)
random variable,
where Af,, is the variance of the multiplicative synaptic
noise.

In the model of random synaptic deletion, synaptic con-
nections are constituted as
and the generated patterns are called sparse pattern with bias

l1+a
PI’Ot[giM: +1]= T, (2

a (—1<a<1). We have determined that the firing rate of o - .

states in the retrieval phase is the same for each memorized Jij= Nc(l az) E (&' -a)é-a), (10)
pattern[17,18. In this case, thresholéd h can be determined

as wherec;; is a cut coefficient. The synapse that is cut is rep-

N resented by the cut coefficiea =0. In the case of symmet-

i Ss ’_(2 J%x+h 3) ric random deletion, the cut coefficient§ andc;; are gen-

N <1 = ' erated according to the probability

The firing rate becomet=(1+a)/2 at the bias. Profc;;=1]=1—-Prolfc;=0]=c, c;=c;, (11
Additive synaptic noise, multiplicative synaptic noise,

random synaptic deletion, and nonlinear synapse can be i

troduced by synaptic connections in the following manner.
In the case of additive synaptic noise, synaptic connec-

herec is the connecting rate.
In the model of nonlinear synap$27], synaptic connec-
tions are constituted as

tions are constituted as Jp
p
aN =N (T, (12
’ 2 (E-ag-ats @
Jij=———— a a ,
ij N(l 8.2) (f ij 0
| y N , i = 5 2 (&-a)E—a)~NO.D, (13
where §;; is the additive synaptic noise. The symmetric ad- \/—(1 as) n=
ditive synaptic noisey; and g;; are generated according to ] o
the probability, wherep=aN. The nonlinear synapse is introduced by ap-
plying the nonlinear functiori(x) to the conventional Heb-
5/§ bian connection matrig;; .
5ij~N(0,W v Gij=6i, 5

Systematic deletion by nonlinear synapse

where 83 is the absolute strength of the additive synaptic ~Chechik et al. pointed out that a memory performance,
noise. The parametei, is assumed to b©(1). This means  which is a storage pattern number per a synapse number, is
that the synaptic connectial); is O(1/YN). It is useful to  maximized by systematic deletion that cuts synapses that are
define the parameteX, as lightly weighted[12,13,15. Such a systematic deletion can
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FIG. 1. Clipped synapse. FIG. 3. Compressed deletion.
be represented by the nonlinear functigr) for a nonlinear dz via
synapse. In accordance with Checkikal, we discuss three Dz= \/Eex o) (16)
types of nonlinear functiongFigs. 1-3. Figure 1 shows
clipped modification that is discussed generally as and E,V denote the operators to calculate the expectation
and the variance for the random variableg" (i
sonz), - |z|>t —1,.. Nopu=1 N ively. The funct
fi(z,t)= _ 14 =1,...Nu=1....aN), respectively. e function
0 otherwise. p(f(2),z) denotes the correlation coefficient. Checkikal.

considered the piecewise linear function such as following
nonlinear functions. In order to find the best nonlinear func-

Chechik et al. also obtained the nonlinear functions o T .
shown in Figs. 2 and 3 by applying the following optimiza- ion f(2), we should maximize(f(2),2), which is invariant
tion principles[15,19. In order to evaluate the effect of syn- 10 Scaling. Namely, the best nonlinear functibfx) is ob-
aptic pruning on the network’s retrieval performance,t@ned sz maximizingE[zf(z)] under the condition that
Chechik et al. study its effect on the signal-to-noise ratio ELT(2)°] is constant. Lety be the Lagrange multiplier, then

(S/N) of the internal fielch;==,,;J;x;+ h [15]. TheS/N is It is sufficient to solve

calculated by analyzing the moments of the internal field and w w
is given as f Dz zf(z)— y( f Dz f(Z)Z_Co)—)maX, 17
E[h|é¢=1]—E[h;|&*=—1] for some constant,. Since the synaptic connection before
SINT the action of the nonlinear functiom;; obeys a Gaussian
" WIhg] ! over

distributionN(0,1), Eq.(13) is averaged over all of the syn-
aptic connections.

f Dz zf(z) Thus, the nonlinear function shown in Fig. 2,
E[zf(2)] —
* E[f(Z)z] T~ = ) Z, |Z|>t
f_xDZ f(2) f(2.)= 0 otherwise, (18)
=p(f(2),2), (15 is also obtained. The deletion by this nonlinear function is

called minimal value deletion. Similarly, by adding the con-
dition that the total strength of synaptic connection

wherez has standard normal distribution, i.&[z>]=V[z] /DZ|f(2)| is constant, the nonlinear function

=1 andDz is Gaussian measure defined as

z—sgnz)t, |z|>t
f2(z0) f3(zb=1, otherwise
=fy(z,t)—tf4(z,1) (19

is obtained. The deletion by this nonlinear function is called
compressed deletion. We discuss systematic deletion by us-
-t t ing these three types of nonlinear functiongz,t),f,(z,t),
andf3(z,t) given by Chechiket al. [15].

Ill. RESULTS

In this section, the results concerning the multiplicative
FIG. 2. Minimal value deletion. synaptic noise, the random deletion, and the nonlinear syn-
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apse are shown, at the limit where the effect of these deler 1.2
tions is extremely large.
The SCSNA starts from the fixed-point equations for the 1 Sy ¥
dynamics of arN-neuron network as Ed1). The results of f G N
the SCSNA for the symmetric additive synaptic noise are . 98 I ﬁ : LT
summarized by the following order-parameter equatices s 3 Eﬁi‘%
Appendix A): £ 067 i ; ]
< :
04 r [ i
m= Dz((é—a)Y(z , 20 1 i
1_a2f (E-a)Y(z:)), (20 o | - 2
0 TE2,F hm e it B B R e K ak a e ki
q= f DZ(Y(z €)%, (21) 0 01 02 03 04 05 06 07
Loading Rate «
_ = ) FIG. 4. Overlaps in the random deletion network. The curves
U= (rj Dz ZXY(z §)>§’ (22 represent the theoretical results. The dots represent simulation re-
sults withN=3000 andf=0.1 for the connecting rates=0.1, ¢
. aJ?q J2 ) =0.3, andc=1.0.
o= >+ 5 2AAq, (23
(1-JU)* (1-a9) ~
J
A =5 b (28)
Y(z;§)=F<J(§—a)m+oz+h
whereJ, J? are
- aJ’U - z AZlY (24)
Z, ,
1-JU  (1-a2)2 * (#8) sz Dz zf(2), (29)
where(- - - ), implies averaging over the target pattern amd
is the overlap between the first memory pattétnand the jzzf Dz f(2)2. (30)
equilibrium statex defined as
1 N In the following sections, symmetries of the additive synap-
= E (&—a)x;; (25  tic noise, the multiplicative synaptic noise, and random de-
N(1-a%) i=1 letion are assumed. Storage capacity can be obtained by

N . ) solving the order-parameter equations.
note that generality is kept even if the overlap was defined by Figgre 4 showsf)n(a) curvesqin the random deletion net-

only the flrst.mem.ory patterm is EdV\_/gr_ds-AnQerson order work with the number of neurori$= 3000 and the firing rate
parameterl is a kind of the susceptibility, which measures £—0.1 for the connecting rates=0.1, c=0.3, andc=1.0
f[he sensitivity of heuron output with respect to t%e_ externallt carl‘l be confirmed that the theorétiéal res.uits of the ééSNA
anr?t,nY(z, Ef) Iti annefifectn(/(\e/ resp:)r][ﬁe func;tmp,fag t:; the are in good agreement with the computer simulation results
_a a ce_o . teh ?ﬁe' Ve set_ © Olrjl pu du ct (D(f)th from Fig. 4. Since it is known that theoretical results ob-
—sgrj(xgl a II:n e_ f_OW'nE SeC;%nS,t‘;]V ere elgma[]—ol € tained by means of the SCSNA are generally in good agree-
X\;a”a e isF(x)=1—a whenx=0, otherwiseF(x)= ment with the results obtained through the computer simula-
e . . . tions using various models that include synaptic noise, we
According to Okadaet al. [16], the symmetric additive treat the results by means of the SCSNA ofilg,20—24.
synaptic noise, the symmetric random deletion, and the non- Through the relationships of Eq&6)—(30) thé symmet-
Iir!ear_ Synapse can b_e transformed into the SV”_‘me”‘C mulﬁfic additive synaptic noise, the symmetric ,random deletion,
pI(;((:jz_att_Ne syna;:_tlc noise as followssee Appendix B the and the nonlinear synapse can be discussed in terms of the
addrtive synaptic noise 1S symmetric multiplicative synaptic noise. Therefore, first of
2 all, we deal with the multiplicative synaptic noise.
2 Al
M= N (26)
a(l-a%) A. Multiplicative synaptic noise
Figure 5 shows the dependence of storage capacity on the
multiplicative synaptic noise. As it is clear from Fig. 5, stor-
, 1l-c age capacity. is inversely proportional to the variance of
A= ' @7 the multiplicative synaptic noisa2,, when the multiplica-
tive synaptic noise is extremely large. Storage capaejty
and the nonlinear synapse is asymptotically approaches

the random deletion is
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SCSNA(f=0.5) ——
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8 1 [75]
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-20 : : : : : : : 0 : : : : :
0 1 2 3 4 5 6 7 8 -12 -10 -8 -6 -4 -2 0
multiplicative noise  logio@m) connecting rate logio(c)

FIG. 5. Dependence of storage capaeityon the multiplicative FIG. 7. Dependence of the synapse efficieggy; on the ran-
synaptic noise\Z; at the firing ratef =0.5. Comparison of asymp- dom deletion with the connecting rateat the firing ratef=0.5.
tote and the results from the SCSNA. Comparison of asymptote and the results from the SCSNA.

2 according to the asymptote of the multiplicative synaptic
ac= A2 (31) noise in Eq.(31). In the random deletion, the synapse effi-
TAM

ciency Sq¢¢, Which is storage capacity per the connecting
rate[14,16, i.e., storage capacity per the input of one neu-

(see Appendix € In the sparse limit where the firing rate is on, and defined as

extremely small, it is known that storage capacity become
a.=1/(f|In f|) [18,20,28-30

Figure 5 shows the results from the SCSNA and the as- Sefi= ﬁ’ (33)
ymptote at the firing raté=0.5. Figure 6 shows the results ¢
from the SCSNA at various firing rates. It can be confirmed
that the order of the asympto@(1/A%) does not depend on aPProaches a constant value as

the firing rate from Fig. 6.
Sup=e=2 (34)
B. Random deletion ett™ ¢ =~ 4

Next, we d'SCU.SS th_e asymptote OT the random OIemt'onaccording to Eq(32) at the limit where the connecting rate
The random deletion with the connecting ratean be trans- is extremely small
formed into the multiplicative synaptic noise by E@7). s

H he limit wh h . ) I Figure 7 shows the result from the SCSNA and the as-
ence, at the limit where the connecting rates extremely ymptote at the firing raté=0.5. Figure 8 shows the results
small, storage capacity becomes

from the SCSNA at various firing rates. It can be confirmed
5 2¢ 5 that the order of the asymptot®(1) with respect ta, does

A=——g = = — —C, (32)  not depend on the firing rate from Fig. 8.
TAYy m(l-c) =

~ 7
S
%2} 6
= | =07 ]
3 = £=106
R
2 . 4 F
o0 ) £=10-5
[=) =}
—~ L 37
N g =10+
g S 2 £=10°3
=4 g 4
I =10-2
& §. g=202
=101
& SN SR B0l
s =0.5
& -1 - .
-12 -10 -8 -6 -4 -2 0

0 1 2 3 4 5 6 7 8
multiplicative noise  logio Awm)

connecting rate  logio(c)

FIG. 8. Dependence of the synapse efficie®gy; on the ran-
FIG. 6. Dependence of storage capacityon the multiplicative ~ dom deletion with the connecting ratet various firing rates. It can
synaptic noisaf,I . It can be confirmed that the order of the asymp- be confirmed that the order of the asymptote does not depend on the
tote does not depend on the firing rate. firing rate.
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C. Systematic deletion
1. Clipped synapse

Synapses within the ranget<z<t are pruned by the
nonlinear function of Eq(14).

The connection rate of the synaptic deletion in Eq13)
is given by

c= J Dz
{zf1(z)#0}

—1—erf<L) \ﬁt‘lex%—f) t—o, (35)
B \/E N7 2] T

since the synaptic connectioly; before the action of the
nonlinear function of Eq(13) obeys the Gaussian distribu-

tion N(0,1). Next,J,J of Egs.(29) and(30) become
» 2 t2
J=2f Dz zsgn(z) = ;ex — =|—tc, t—oo,
t

2
(36)

jzzzjthzz (37)

Hence, the equivalent multiplicative synaptic noisé] is
obtained as

J2 1
=———1-—

A
J? t’c

t—o0,

iﬂ (39)

The relationship of the pruning rangeand the connecting
ratec,

t?>=—21nc, (39
is obtained by taking the logarithm of E@5) att— oo limit.
Therefore, at the limit where the equivalent connecting cate

is extremely small, storage capacity can be obtained,

ac=—;clnc, (40

through Egs.(31), (38), and (39). The synapse efficiency
becomes

Qg
S.=—=——|nc. 41
eff™ ¢ m ne (41)

Figure 9 shows the results from the SCSNA and the asymp:
tote at the firing ratef =0.5. Figure 10 shows the results

PHYSICAL REVIEW E 68, 031910(2003

35
30
25 ¢
20t
15t
10t
5t

ot
-12

SCSNA(f=0.5) ——
-(4/m)log ¢

synapse efficiency Seff

-8
connecting rate logio(c)

-10
FIG. 9. Dependence of the synapse efficier®y; with the
clipped synapse on the connecting ratet f =0.5. Comparison of

the results from the SCSNA and asymptote.

2. Minimal value deletion

In a similar way, the equivalent multiplicative synaptic
noiseAf,I of the systematic deletion of E¢L8) is obtained as
follows:

: (42)

where the connecting rateandJ,J of Egs.(29) and(30) are

t
c= Dz=1-erfl =
f{zﬁz(lvtﬁo} ( \/§>

t2
— —t‘lexp<——), t—oo, (43)
T 2
J—\F v +1 f !
= ;tex —E —er E
2 t?
—\/—texp — =/, t—om, (44
T 2

synapse efficiency logio (Se¢f)

connecting rate logio(c)

from the SCSNA at various firing rates. It can be confirmed FIG. 10. Dependence of the synapse efficiesgy; with the

that the order of the asympto@(Inc) does not depend on
the firing rate from Fig. 10.

clipped synapse on the firing rafelt can be confirmed that the
order of the asymptote does not depend on the firing rate.
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35 v g 35 v g
SCSNA(f=0.5) —— SCSNA(f=0.5) ——
g 30} -(4/m)logc ————-- g 30| -@/m)logc -
w2 w2
Q Q
g I g
g 2
T 15¢ T
2 2
s 10t 5
=l =l
5 5| >
ot . . . . .
-12 -10 -8 -6 -4 -2 0
connecting rate  logio(c) connecting rate  logo (c)
FIG. 11. Dependence of the synapse efficieiSzy; with the FIG. 13. Dependence of the synapse efficiesgy; with the

minimal value deletion on the connecting rateat time f=0.5. compressed deletion on the connecting cadef =0.5. Comparison
Comparison of the results from the SCSNA and the asymptote. of the results from the SCSNA and the asymptote.

3. Compressed deletion

J?2=3, (45) o - . o
Again, in the similar way, the equivalent multiplicative

synaptic noiseAﬁ,, of the systematic deletion of E@19) is
respectively. Hence, at the limit where the equivalent congiven by
necting ratec is extremely small, storage capacity and the
synapse efficiencys.¢s can be obtained through Eq81), 32 2

(42), and(39) as follows: AR BT 1— 20’ t—oo, (48)
4 where the connecting rateandJ,J of Egs.(29) and(30) are
a.=——clng, (46)
T t
c= Dz=1-erfl —
. J{z|f3(z,t)¢0} ( ﬁ)
Sett=— ;In c, (47 2 t2
— tlexp<—), t— o0, (49
T 2
respectively. Figure 11 shows the results from the SCSNA J=c, (50)
and the asymptote at the firing rate0.5. Figure 12 shows
the results from the SCSNA at various firing rates. It can be_ % w
confirmed that the order of the asymptote does not depend od?= f Dz fz(z,t)2+t2f Dz fi(z,t)?

the firing rate from Fig. 12.

—meDsznbun

= _
23

& \Ftp(tzﬂftﬂzlft
o = —texg — = —erfl — —erfl —
: R 2 2
&)

§ ot 2 t2

% 7Tex 2

2

s 2c

g., —>t72, t—oo, (51

respectively. Here, we use an asymptotic expansion equation

connecting rate  logio(c) of the error function
FIG. 12. Dependence of the synapse efficieisgy; with the eﬂ(2 1 1 3
minimal value deletion on the firing rafelt can be confirmed that erf(x)=1— — ( _— _o(x*7) , (52
the order of the asymptote does not depend on the firing rate. \/; X 2x3 4x®
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w T y y y y TABLE I. Asymptote of storage capacity by the random dele-
v‘;«‘» 6 =107 T T T T -~ i ] tion and by the systematic deletion at the firing r&te0.5.
Oeb 5 B0 e = T f deleti H
o - ypes of deletion Storage capacity
R S ] (Asymptote
] =104 T e——
g 3T ~] Random deletion (2f)c
L.“q:: ********* Systematic deletion clipped synapse 7t¥%¢|In ¢|
0 Minimal value deletion (4f)c|Inc|
§" Compressed deletion @)c|Inc|
>
-12 -10 -8 6 -4 -2 0 confirmed that the order of the asymptdIn c) does not
connecting rate  logio(c) depend on the firing rate from Fig. 14.

. , Figure 15 shows the dependence of the synapse efficiency
FIG. 14. Dependence of the synapse efficiesgy; with the S.; on the connecting rate obtained by means of the
compressed deletion on the firing rétét can be confirmed that the SeCSNA Table | shows the asymptote of storage capacity
order of the asymptote does not depend on the firing rate. with the random deletiorird) and the systematic deletion
f der for the fi d th q f(sd). Hence, when using minimal value deletion as the sim-
orx>1. In order for the first term and the second term of ot from of systematic deletion we found that the synapse

Eq. (51) to be of the same order, the asymptotic eXpanSiorgfficiency (Table 1) in the case of systematic deletion be-
equation has taken the approximation @f(t"°) and .jnes

O(t™), respectively. The equivalent multiplicative synaptic
noise in the case of systematic deletion becomes double that

of the clipped synapse of E¢38) and the minimal value Sefiisqy  (4/m)[Inc|
deletion of Eq(48). Therefore, at the limit where the equiva- Seff(rd) 2l a
lent connecting rate is extremely small, storage capacity
and the synapse efficien&¢; can be obtained through Egs.
(31), (48), and(39) as follows:

2|Inc|; (55

thus we have shown analytically that the synapse efficiency
in the case of systematic deletion divergesOdfin c|) at the
2 limit where the connecting rate is extremely small, and
a.=——clnc, (53 have also shown that the synapse efficiency in the case of the
77 systematic deletion becomedlr2c| times as large as that of
the random deletion.

2
Seff:_gln C, (54)
IV. THE MEMORY PERFORMANCE UNDER LIMITED

respectively. Figure 13 shows the results from the SCSNA METABOLIC ENERGY RESOURCES

and the asymptote at the firing rdte0.5. Figure 14 shows Until the preceding section, we have discussed the effect
the results by the SCSNA at various firing rates. It can beof synaptic pruning by evaluating the synapse efficiency
which is the memory capacity normalized by connecting rate

/ e NN
—(2/m) logc /‘\‘-3.:?_:\\ N
10 1 “‘-?‘?.T_}#\ ~
systematic deletion "‘*~>.~.,_\
5 (Compressed deletion) S,

TABLE Il. Asymptote of the synapse efficiency by the random
deletion and the systematic deletion at the firing fated.5.

35 - - - T - ¢. When the connecting rate ésthe synapse number per one
20 \\ neuron decreases tN. Therefore, the synapse efficiency
& S means the capacity per the input of one neuron. In the dis-
2 a5 | S (Scylj;"e’:‘;jljjilg‘c‘:{i‘m) j‘\'E ] cussion on the synapse efficiency, the synapse number de-
> TR creases when the connecting rate is small.
g 2 N systemzlticcllelegczn j_{_ﬁ In addition to such fixed neuron number criterion, a fixed
'S — N ini ti . . . .
2 15 o Ny Minimal value deletion) synapse number criterion could be discussed. At the synaptic
& r T o
5 - s
(]
&
<
e
>
7]

ok random deletion Types of deletion Synapse efficiency
Asymptot
2 10 8 6 4 2 0 (Asymetots
connecting rate loguo(c) Random deletion (2)
Systematic deletion clipped synapse 7t¥in ¢|
FIG. 15. Comparison of the synapse efficiency with the random Minimal value deletion (4d)|Inc|
deletion and that with the systematic deletion at the firing fate Compressed deletion @)|Inc|
=0.5.
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clipped Synapse — memory performance on the connecting rate in three types of
minimal value deletion - - - ; ; : ; ;
025F ... compessed deletion --- 1 pruning. It is confirmed that there are optimal values which

maximized the memory performance by each deletion.
The optimal connecting rates of clipped synapse, minimal
value deletion, and compressed deletion are

=0.036,0.038,0.084, respectively. This interesting fact may
imply that the memory performance is improved without
heavy pruning. These optimal values agree with the com-

0.2}

0.15}

memory performance

0.1y puter simulation results given by Checlgkal. [15].
005t
V. CONCLUSION
05 02 037 05 03 We have analytically discussed the synapse efficiency,

which we regarded as the autocorrelation-type associative
memory, to evaluate the effect of the pruning following over-
FIG. 16. Memory performance,/+/c of networks with differ-  growth. Although Chechilet al. pointed out that the synapse
ent number of neurons but the same total number of synapses asefficiency is increased by the systematic deletion, this is
function of the connecting ratein the case of clipped synapéthe  qualitatively obvious and the increase in the synapse effi-
solid line), minimal value deletiorithe dotted ling, and compressed ciency should also be discussed quantitatively. At the limit
deletion(the dashed line where the multiplicative synaptic noise is extremely large,
storage capacityy, varies inversely as the variance of the
growth stage, it is natural to assume that metabolic energytiplicative synaptic noisé2,. From this result, we ana-
resources are_restrlcted. When metabolic energy reSOUrCRgically obtained that the synapse efficiency in the case of
are limited, it is also important that the effect of synaptic,e systematic deletion diverges &|Inc]) at the limit
pruning is discussed under limited synapse number. Chechifphere the connecting rateis extremely small.
et al. discussed the memorized pattern number per one syn- o the other hand, it is natural to assume that metabolic
apse under a fixed synapse number criterfdb]. They  energy resources are restricted at the synaptic growth stage.

point_ed out the existence of an o.ptimal connecting rate Und&fyhen metabolic energy resources are limited, i.e., synapse
the fixed synapse number criterion and suggested an explaymper is limited, the optimal connecting rate that maxi-

nation of synaptic pruning as follows: synaptic pruning fol- pizes memory performance exists. These optimal values are

lowing overgrowth can improve the performance of a net, agreement with the results given by Chechtial. [15].

work with limited synaptic resources. In the correlation learning, which can be considered a
The synapse number N in the full connected case  prototype of any other learning rules, various properties can

=1. We consider the larger network with (>N) neurons.  pe analyzed quantitatively. The asymptote of synapse effi-
The synapse number in the larger networks with the conneckjency in the model with another learning rule can be dis-

ing ratec becomesM?. We can introduce the fixed synapse cyssed in a similar way. As our future work, we plan to
number criterion by considering a larger network which hasqther discuss these properties while taking into account

M neurons, i.e., various considerations regarding related physiological
N2=cM? (56) knowledge.

connecting rate ¢

synapses at the connecting rateThe memorized pattern ACKNOWLEDGMENTS

number per one synapse becomes _ ) o
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Pe=a.N. (58  pan.

where the critical memorized pattern numiperis

We define the coefficientr./\/c as memory performance.
We discuss the effect of synaptic pruning by the memory
performance. Under limited metabolic energy resources, the Derivations of the order-parameter equatid2)—(24)
optimal strategy is the maximization of the memory perfor-are given here. The SCSNA starts from the fixed-point equa-
mance. Chechilet al. showed the existence of the optimal tions for the dynamics of th-neuron network shown as Eq.
connecting rate which maximizes memory performarics. (1). The random memory patterns are generated according to
The memory performance can be calculated by normalizinghe probability distribution of Eq(2). The synaptic connec-
the capacity, which is given by solving the order-parametetions are given by Eq4). The asymmetric additive synaptic
equations, with/c. Figure 16 shows the dependence of thenoise ij and g;; are independently generated according to

APPENDIX A: SCSNA FOR ADDITIVE SYNAPTIC NOISE
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the probability distribution of Eq(7). Moreover, we can ana- Let £ be the target pattern to be retrieved. Therefore, we can
lyze a more general case, whefe and §;; have an arbitrary assume thatm;=0(1) and mM:O(ll\/N),,u>1. Then we

correlation such that can use the Taylor expansion to obtain
CoV 8;; ,5-i]=k5LA,§, —1=<ks<1. (A1) m ! 2 (g —a)x
b N(1—a?)2 “TN(1—a?) (S
In this general case, the symmetric and the asymmetric ad- J N v ,(M)
ditive synaptic noise correspondkg=1 andk;=0, respec- + 2 (¢ —a)? m,X

tively. Here, we assume that the probability distribution of
the additive synaptic noise is normal distribution N
Z (& —a)x®+Jum,

2

J? N(1 a®)
Si~N|l 0————AZ].
. N(1-a2)2 *

1

N

2, (' -ax", (A9
However, any probability distributions, which have same av- N(1 a®)(1-JU) =
erage and variance, can be discussed by the central li

theorem in the similar way as in the following d|scuSS|or?]?X3§'uv?/‘:’gru;mg Eq.(A8) into the overlap defined by Eq.
Defining the loading rate as=p/N, we can write the local
field h; for neuroni as aN

X(,u)_ (

JE(&—@m+25w@ﬂ,(mm

aN
h,= Z Jijx;j= JE (& —aym, +E 8ijx;—Jax;,
(A2) x' (1 =F (JZ (&—a)m, +2 5,Jx(51"), (A11)

wherem,, is the overlap between the stored pattéfnand

the equilibrium statex defined by 10
=N 2 . (A12)

HMZ

gr-ax. (A3) Equations(A7) and (A9) give the following expression for

m,=
N(l a®) )
the local field:

The second term including;=F(h;+h) in Eq. (A2) de-

2 2
g;a,nds ongji . The &;; dependences of; are extracted from hi:J(gil_a)mlJr o 1—JJU +k5(1_az)zA/2\ Ux,
XJ_X((S“)J”S & X,((S“) (A9 ) % %JN (&—a)(&—axi¥
Where N(l a?)(1-JU) (7 a=2
x}‘sﬁ):F(hj—a‘,—ixi), (A5) +,2¢. 5,Jx %ji) (A13)
X" =F (hy = 5jx). (AB)  Note that the second term in EG\13) denotes the effective

o . _ self-coupling term. The third and the last terms are summa-
Substituting Eq(A4) into Eq. (A2), the local fieldh; can be  tions of uncorrelated random variables, with mean 0 and

expressed as Variance,
aN J2 N aN
hi=J g—aym,+ 2, §; X %) — Jarx; (EF—a)?(&r—a)?(xM)?
E( 2 ] | %1a¥a‘wﬁggég (& —a)2(x*)
(5:) ald?
+Xi2 8ij 6jix" (A7) -——q, (A14)
i (1-Ju)?
We assume that EA7) andx;=F(h;+h) can be solved by 32
using the effective response functibifu) as Z S5 (5“) WAiq, (A15)
j#i l1-a
N
—Fl31> (giu_a)mMJrE 5ijx§5ji) _ (Ag)  respectively. The cross term of these terms has vanished.
=1 J Thus, we finally obtain
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a’JZ 2 , aN
_ 1 — _
h=J(&-a)m;+oz+ 1_JU+k5(1_a2)2AA ux;, hi—;l(gi“ am,
(A16) L e
+——— 2 X ej(&-a)(E-ax—ax,
o2 afa_ P AZq (A17) N(1-a?) i1 /7 : P
(1-JU)?  (1-a?)? (B2)

from Egs. (A14) and (A15), where z;~N(0,1). Equation

(23) is given by Eq.(A17). Finally, after rewritingé}— &, ~ wherem, is the overlap defined by EqA3). The second
m;—m, z—z, andx;—Y(z;£), the results of the SCSNA term includingx;=F(h;+h) in Eq. (B2) depends orgj; .
for the additive synaptic noise are summarized by the orderfhe &j; dependences arg} dependences of; are extracted

parameter equations of EqR0)—(22) as from x;,
. 1_a2J' D(£-a)Y(Z:E)e, =X ey e (B3)
N
= | DzY(z 2 ) VB
a f AY(Z8)): i J}_(gr—mmﬁm%sjk@f*—a)(fﬁ‘—a)xk
U=if Dz ZY(z:¢)) e N
o S)7e > (g -a) (g -a)x

J’_ —_—
N(1—a?) v#nu
where the effective response functi¥iiz; ¢) becomes

5 +——(g-ayE-ax, (B4)
Y(z:§)=F| J(-a)mtoz+h+| 755 N(1-a%)
2 where
+ky———=A2(UY(Z;¢) |. A18
5(1_a2)2 A ( 5)) ( )
W= (b, — hirith), (B5)
The effective response function of E@4) can be obtained . .
by substitutingks=1 into Eq.(A18).
XrJ(M)(Sji): F'(hj—hj{'u’sji}). (B6)

APPENDIX B: EQUIVALENCE AMONG THREE TYPES

OF NOISE
We assume that E4B2) andx; =F(h;+ h) can be solved by

The multiplicative synaptic noise, the random synapticysing the effective response functidifu) as
deletion, and the nonlinear synapse can be discussed in the
similar manner to Appendix A.

p aN N
- 1
= - S (R
1. Multiplicative synaptic noise Xi F(;l (& a)mu—" N(l—az) ,;1 Jz#l s”(§, a)
Derivations of the equivalent noise, E(6), is given
here. We can also analyze by a similar manner to the analysis X (&~ a)xgﬂ)(gji) (B7)
of the additive synaptic noise. The synaptic connections are ] ] '

given by Egq.(8). The asymmetric multiplicative synaptic

noisee;; andej are independently generated according to N ) _

the probability distribution of Eq(9). We analyze a more Let £ be the target pattern. We substitute £87) into the
general case, wher®; and §;; have an arbitrary correlation Overlap defined by EqA3) and expand the resultant expres-
such that sion by ¢f—a)m, (u>1), which has the order of

) O(1/JN). This leads to
COV[SiJ',SJ'i]:kSA s —1$k8$1. (Bl)

In this general case, the symmetric and the asymmetric mul- 1
tiplicative synaptic noise correspond ko=1 andk,=0,
respectively. Here, we assume that the probability distribu-

tion of the multiplicative synaptic noise is normal distribu-

tion sij~N(0,Aﬁ,|). The local fieldh; for neuroni becomes  where

N
= “_g)x(®) BS
m,, N(l—az)(l—U)igl(gl a)x| (B8)
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CoVcjj,cjil=kcVaricj], —1skc<1, (B16)
X(#)_ 2 (§| _a)m t— |](§|
N(L=as) 2 17 Var{c;1=E[(c;))?] - (E[cy])?=c(1-c). (B17)
X (&'~ a)x v)(s,.) (B9) In this general case, the symmetric and the asymmetric ran-
' dom deletion correspond t.=1 andk.=0, respectively.

According to a similar analysis of the multiplicative synaptic
andU is defined by the similar way to EGA12) in the case noise, the local field becomes
of the additive synaptic noise. EquatiofB2), (B3), and

B8) gi 1 ke(1—c)
(B8) give hi=(§i1—a)m1+al_u+ | Ux
=(&- a)m; +a| 7= +k, AZ|Ux; 1 N aN
- " " (1)
1 N aN N(l a®)(1— U)JZI; (& a)Ef-an
—2 2 (& —a)( ‘fM a)x(") aN N
N(1-a?)(1-U) 7 £ 13 S -0
1 oN N Nc(l—a%) u=1j#i
( )(8.)
N(l a 2 E I](glu a)(é’# a) g ! X(gi/.t_a)(gjyd_a)xfr“)(cji), (818)

(B10) where

The third and last terms can be regarded as the noise terms. (w(eip) _ IRV
) ; X" =F(hy—h ), (B19
The variance of the noise terms becomes ] ]

aN aN

1
2. : =l 2 (g-ams s 3 S
—(1_U)2+aAMq. (B11) [ Nc(1—a2) iy 17 ij
Thus, after rewritinggilag and m;—m, we obtain the ef- X(g_v_a)(é;?_a)x(")(cji) (B20)
I ] ] ’

fective response function:

Y(z;§)=F<(§—a)m+az+h h]{M'Cji}:(é:j“_a) E (Ck—c) (& —a)

Mt Nc(1— a2) K]

+al——+k,AZ UY(z;g)). (B12)
1= X (- >XK+W 2 (& -a) (& —a)x
Finally, the equivalence between the multiplicative synaptic
noise and the additive synaptic noise is obtained as follows: Cji—
+m(§f—a)(§i“—a)xi, (B21)
J=1, (B13) c(1-a)
> B andU is defined by Eq(A12) similarly. The variance of the
Aj=a(l-a%)’Ay, (B14  noise term is given by
ks=k. . (B15) aq 1-¢
ol= > + o g. (B22
by comparing EqB11) and(B12) to Egs.(A17) and(A18). (1-U) ¢

» Random deletion Thus, after r_ewritinggil—>§ and m;—m, the effective re-
sponse function becomes
Derivations of the equivalent noise, E7), is given
here. The random deletion has similar effects to the multipli-
cative synaptic noise. Therefore, we analyze by a similar
way to the analysis of the multiplicative synaptic noise. The
synaptic connections are given by E@0). The asymmetric
cut coefficients are independently generated according to the
probability distribution of Eq(11). We analyze a more gen-
eral case, where;; andc;; have an arbitrary correlation such Finally, the equivalence between random deletion and the
that additive synaptic noise is obtained as follows:

Y(z;§)=F((§—a)m+ oz+h

1 ke(1—c)
1-U + c

+a

uY(z g)) . (B23
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J=1, B24
o2 XgTji):F hj_\/WB[f(Tji)_JTji]Xi ; (B30)
l1-c
Af\:a(l—a2)2?, (B25) )
T{= > (&-a)(g-a), (B3

ks=Kc, (B26) Jp(1—a?) iFu

by comparing Eqs(B22) and (B23) to Egs. (A17) and andU is defined by Eq(A12) similarly. The variance of the
(A18). Substituting Eq(B25) into Eq. (B14), we obtain the noise term is given by
equivalence of Eq(27).
o o¥d +a(3%-37) (B32
3. Nonlinear synapse 7 _(1_JU)2q @ '

Derivations of the equivalent noise, E{®8), is given
here. The effect of the nonlinear synapse can be separat ;
into a signal part and a noise part. The noise part can bePonse function becomes
regarded as the additive synaptic noise.

The systematic deletion of synaptic connections can be Y(z; g):F(J(g_a)m+a-z+h
achieved by introducing synaptic noise with an appropriate
nonlinear functionf(x) [14]. Note thatT;; obeys the normal
distributionN(0,1) for p=aN—«. According to this naive +a
S/N analysis[16], we can write the connections as

ddus, after rewritinggil—>§ and m;—m, the effective re-

2

1-JU

. (B33

+(32—J2)}UY(Z; &)

Finally, the equivalence between the nonlinear synapse and

p
J. :@f(T..): ; > (ef—a)(&r—a) the additive synaptic noise is obtained as follows:
1] N 1] N(l—az) = i |

32
Vp J i Af\=a(1—a2)2(——1), (B34)

Ty L_a)(&—a J?

N T~ e 2 (g-ag-a)
Vp J=f Dx xf(x), (B35)
:W{JTij_[f(Tij)_‘]Tij]}- (B27)

The following derivation suggests that the residual overlap jZZJ Dxf(x)2, (B36)

m,, for the first term in Eq(B27) is enhanced by a factor of

1/(1-JU), while any enhancement to the last part is can-bg comparing Eqs(B32) and (B33) to Egs. (A17) and

celed because of the subtraction. It also implies that the la P . .
. . 18). Substituting Eq(B34) into Eq. (B14), we obtain the
part corresponds to the synaptic noise. For the SCSNA of th equivalence of Eq(28).

nonlinear synapse, we can analyze by a similar manner to th

analysis of the additive synaptic noise. We obtain the local
field: APPENDIX C: ASYMPTOTE FOR LARGE

MULTIPLICATIVE SYNAPTIC NOISE
JZ

hi=J(&—aym;+a +(32-3?) |ux; Derivations of the asymptote of storage capacity in a large
1-Ju multiplicative synaptic noisé\,, are given here.
Jo In Egs. (200-(22), let a=0, J=1, andF(x)=sgn(),
+ Wp > [f(Tij)_JTij]X(Tn) then the order-parameter equations become
iZi )
" ’ S S (e aer-an® m:erf( z ) Y
b—a)(&—a)xi,
N(1—a2)(1-JU) i 7 P 7
(B29) q=1, (C2

where 1 2 m2
U= —\ﬁex -—], (C3)
p oV 202

(W) —F v_
xW=F| 31> (&—am,
I A the threshold becomds=0, the effective response function
0 of Eq. (24) and the variance of the noise become

N
AL (1)) — 3T 75 (Tid)
o =T, 629 Y(z:)=sgriém+ 02), (c4)
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2 @ 2
o :(:L_—U)Z'FAA, (Ch)

respectively, where the error function edf(is defined as

erf(x)= 2 f “evqu, (C6)
Jmto

The slope of the right-hand sidehs) of Eq. (C1) is given by

d m 1 /2 m?
ﬁerf( E) = ;\gex;{ - ﬁ) . (C?)

Equation(C1) has nontrivial solutionsn# 0 within the range
where the slope of the rhs of EGQC7) atm=0 is greater than
1. Therefore, the critical value of the noieé is given by
(CY

o2=2lm.

This shows that a retrieval phase exists onlydet o.. We
define the parametet(<1) as

(C9

to solve formas a function ofr in the vicinity of this critical

PHYSICAL REVIEW E 68, 031910(2003

1 m?
U=— l—;

+0(mYH=3-27"1 (C11)

T o

From Eqg.(26), the variance of the multiplicative synaptic
noiseA2M is related to the variance of the additive synaptic
noiseA% as

Ad=aA?, (C12
when biasa=0. Therefore, substituting EqgC11) and
(C12 into Eq.(CH), the variance of the noise is given as

2
aT
o= a2

a1y (13

The loading ratex becomes

8 r(1-1)?

Cr 2rania-2) (19
When the overlap is small enough, i.en<1, the order-
parameter equations of Eq€1)—(C5) reduce to Eq(C14).
Solving Eq.(C14) for the fixed value ofa and Ay, we
obtain the parameter. Substitutingr into Eq.(C10), we can
obtain the overlapn for given « and Ay, . It is easily con-
firmed that ther increases withy for the fixed value of\, .

value o . The critical value of the additive synaptic noise is This means that the maximal value ofwhich holds, Eg.

discussed in the case ef=1. The overlapm shows the
first-order phase transition wheh, is small, but it is re-
garded as the second-order phase transition at lapgee-
gion. The overlap becomes<1 whenr=1 andA, is suf-
ficiently large, therefore the nontrivial solution ofis given
as

3

m="— " o(m")=o.r\6(17),

T 60t

(C10

by Taylor expansion including terms up to the third order.

Substituting Eq(C10) into Eq. (C3), U becomes

(C14) corresponds to the maximum value ®f that is, stor-
age capacityr.. The critical valuer. is equal to the value
which maximizes the loading rate of EqC14) and becomes

2A 2/3
e R

T1r(2a% ©19

in a largeA,, limit. Therefore, substituting Eq(C15) into
Eq. (C14), we obtain Eq(31) as follows:

2

5>
TAY

(C16
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