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Synapse efficiency diverges due to synaptic pruning following overgrowth
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In the development of the brain, it is known that synapses are pruned following overgrowth. This pruning
following overgrowth seems to be a universal phenomenon that occurs in almost all areas—visual cortex,
motor area, association area, and so on. It has been shown numerically that the synapse efficiency is increased
by systematic deletion. We discuss the synapse efficiency to evaluate the effect of pruning following over-
growth, and analytically show that the synapse efficiency diverges asO(u ln cu) at the limit where connecting
ratec is extremely small. Under a fixed synapse number criterion, the optimal connecting rate, which maxi-
mizes memory performance, exists.
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I. INTRODUCTION

In this paper, we analytically discuss synapse efficienc
evaluate effects of pruning following overgrowth durin
brain development, within the framework of autocorrelatio
type associative memory.

Because this pruning following overgrowth seems to b
universal phenomenon that occurs in almost all areas—vi
cortex, motor area, association area, and so on@1–10#—we
discuss the meaning of its function from a universal vie
point rather than in terms of particular properties in ea
area. Of course, to discuss this phenomenon as a univ
property of a neural network model, we need to choose
appropriate model.

Artificial neural network models are roughly classifie
into two types: feed forward models and recurrent mod
Various learning rules are applied to the architectures
these models, and correlation learning corresponding to
Hebb rule can be considered a prototype of any other le
ing rules. For instance, correlation learning can be regar
as a first-order approximation of the orthogonal project
matrix, because the orthogonal projection matrix can be
panded by correlation matrices@11#. In this respect, we can
naturally regard a correlation-type associative mem
model as one prototype of the neural network models of
brain. For example, Amitet al. discussed the function of th
column of anterior ventral temporal cortex by means o
model based on correlation-type associative memory mo
@12,13#. Also, Sompolinsky discussed the effect of dilutio
He assumed that the capacity is proportional to the num
of remaining bonds, and pointed out that a synapse efficie
of diluted network, which is storage capacity per a conne
ing rate, is higher than a full connected network’s one@14#.
Chechiket al. discussed the significance of the function
the pruning following overgrowth on the basis of
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correlation-type associative memory model@15#. They
pointed out that a memory performance, which is stored p
tern number per synapse number, is maximized by syst
atic deletion that cuts synapses that are lightly weight
However, while it is qualitatively obvious that synapse ef
ciency and memory performance are increased by a sys
atic deletion, we also need to consider the increase of s
apse efficiency quantitatively.

In this paper, we quantitatively compare the effectiven
of systematic deletion to that with random deletion on t
basis of an autocorrelation-type associative memory mo
In this model, one neuron is connected to other neurons w
a proportion ofc, wherec is called the connecting rate. Sys
tematic deletion is considered as a kind of nonlinear corre
tion learning@16#. At the limit where the number of neuron
N is extremely large, it is known that random deletion a
nonlinear correlation learning can be transformed into co
lation learning with synaptic noise@14,16#. These two types
of deletion, systematic and random, are strongly related
multiplicative synaptic noise. First, we investigated the d
pendence of storage capacity on multiplicative synap
noise. At the limit where multiplicative synaptic noise is e
tremely large, we show that storage capacity is invers
proportional to the variance of the multiplicative synap
noise. From this result, we analytically derive that the sy
apse efficiency in the case of systematic deletion diverge
O(u ln cu) at the limit where the connecting ratec is extremely
small. We also show that the synapse efficiency in the cas
systematic deletion becomes 2u ln cu times as large as that o
random deletion.

In addition to such fixed neuron number criterion as t
synapse efficiency, a fixed synapse number criterion could
discussed. At the synaptic growth stage, it is natural to
sume that metabolic energy resources are restricted. W
metabolic energy resources are limited, it is also import
that the effect of synaptic pruning is discussed under limi
synapse number. Under this criterion, the optimal connec
rate, which maximizes memory performance, exists. Th
optimal connecting rates are in agreement with the comp
simulation results given by Chechiket al. @15#.
©2003 The American Physical Society10-1
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II. MODEL

Sompolinsky discussed the effects of synaptic noise
nonlinear synapse by means of the replica method@14#.
However, symmetry of the synaptic connectionsJi j 5Jji is
required in the replica method since the existence of
Lyapunov function is necessary. Therefore, there was a p
lem that the symmetry regarding synaptic noise had to
assumed in the Sompolinsky theory. To avoid this proble
Okadaet al.discussed additive synaptic noise, multiplicati
synaptic noise, random synaptic deletion, and nonlinear s
apse by means of the self-consistent signal-to-noise ana
~SCSNA! @16#. They showed that additive synaptic nois
random synaptic deletion, nonlinear synapse can be tr
formed into multiplicative synaptic noise.

Here, we discuss the synchronous dynamics as

xi5FS (
j Þ i

N

Ji j xj1hD , ~1!

whereF is the response function,xi is the output activity of
neuron i, and 2h is the threshold of each neuron. Eve
componentj i

m in a memorized patternjm is an independen
random variable,

Prob@j i
m561#5

16a

2
, ~2!

and the generated patterns are called sparse pattern with
a (21,a,1). We have determined that the firing rate
states in the retrieval phase is the same for each memo
pattern@17,18#. In this case, threshold2h can be determined
as

a5
1

N (
i 51

N

sgnS (
j Þ i

Ji j xi1hD . ~3!

The firing rate becomesf 5(11a)/2 at the biasa.
Additive synaptic noise, multiplicative synaptic nois

random synaptic deletion, and nonlinear synapse can be
troduced by synaptic connections in the following manne

In the case of additive synaptic noise, synaptic conn
tions are constituted as

Ji j 5
J

N~12a2!
(
m51

aN

~j i
m2a!~j j

m2a!1d i j , ~4!

whered i j is the additive synaptic noise. The symmetric a
ditive synaptic noised i j and d j i are generated according t
the probability,

d i j ;NS 0,
dA

2

N D , d i j 5d j i , ~5!

where dA
2 is the absolute strength of the additive synap

noise. The parameterdA is assumed to beO(1). This means
that the synaptic connectionJi j is O(1/AN). It is useful to
define the parameterDA as
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DA[
dA

J/~12a2!
, ~6!

which measures the relative strength of the noise and we
the parameterDA

2 the variance of the additive synaptic nois
Therefore, we define the probability to generate the addi
synaptic noised i j as

d i j ;NS 0,
J2

N~12a2!2
DA

2 D , d i j 5d j i . ~7!

In the case of multiplicative synaptic noise, synaptic co
nections are constituted as

Ji j 5
11« i j

N~12a2!
(
m51

aN

~j i
m2a!~j j

m2a!, ~8!

where « i j is multiplicative synaptic noise. The symmetr
multiplicative noise« i j and « j i are generated according t
the probability,

« i j ;N~0,DM
2 !, « i j 5« j i , ~9!

where DM
2 is the variance of the multiplicative synapt

noise.
In the model of random synaptic deletion, synaptic co

nections are constituted as

Ji j 5
ci j

Nc~12a2!
(
m51

aN

~j i
m2a!~j j

m2a!, ~10!

whereci j is a cut coefficient. The synapse that is cut is re
resented by the cut coefficientci j 50. In the case of symmet
ric random deletion, the cut coefficientsci j andcji are gen-
erated according to the probability

Prob@ci j 51#512Prob@ci j 50#5c, ci j 5cji , ~11!

wherec is the connecting rate.
In the model of nonlinear synapse@27#, synaptic connec-

tions are constituted as

Ji j 5
Ap

N
f ~Ti j !, ~12!

Ti j 5
1

Ap~12a2!
(
m51

p

~j i
m2a!~j j

m2a!;N~0,1!, ~13!

wherep5aN. The nonlinear synapse is introduced by a
plying the nonlinear functionf (x) to the conventional Heb-
bian connection matrixTi j .

Systematic deletion by nonlinear synapse

Chechik et al. pointed out that a memory performanc
which is a storage pattern number per a synapse numbe
maximized by systematic deletion that cuts synapses tha
lightly weighted@12,13,15#. Such a systematic deletion ca
0-2
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be represented by the nonlinear functionf (x) for a nonlinear
synapse. In accordance with Chechiket al., we discuss three
types of nonlinear functions~Figs. 1–3!. Figure 1 shows
clipped modification that is discussed generally as

f 1~z,t !5H sgn~z!, uzu.t

0 otherwise.
~14!

Chechik et al. also obtained the nonlinear function
shown in Figs. 2 and 3 by applying the following optimiz
tion principles@15,19#. In order to evaluate the effect of syn
aptic pruning on the network’s retrieval performanc
Chechik et al. study its effect on the signal-to-noise rat
(S/N) of the internal fieldhi[( j Þ iJi j xj1h @15#. TheS/N is
calculated by analyzing the moments of the internal field a
is given as

RS/N5
E@hi uj i

m51#2E@hi uj i
m521#

AV@hi uj i
m#

}
E@z f~z!#

AE@ f ~z!2#
5

E
2`

`

Dz z f~z!

E
2`

`

Dz f~z!2

[r„f ~z!,z…, ~15!

wherez has standard normal distribution, i.e.,E@z2#5V@z#
51 andDz is Gaussian measure defined as

FIG. 1. Clipped synapse.

FIG. 2. Minimal value deletion.
03191
,

d

Dz5
dz

A2p
expS 2

z2

2 D , ~16!

and E,V denote the operators to calculate the expecta
and the variance for the random variablesj i

m ( i
51, . . . ,N,m51, . . . ,aN), respectively. The function
r„f (z),z… denotes the correlation coefficient. Chechiket al.
considered the piecewise linear function such as follow
nonlinear functions. In order to find the best nonlinear fun
tion f (z), we should maximizer„f (z),z…, which is invariant
to scaling. Namely, the best nonlinear functionf (x) is ob-
tained by maximizingE@z f(z)# under the condition tha
E@ f (z)2# is constant. Letg be the Lagrange multiplier, then
it is sufficient to solve

E
2`

`

Dz z f~z!2gS E
2`

`

Dz f~z!22c0D→max, ~17!

for some constantc0. Since the synaptic connection befo
the action of the nonlinear functionTi j obeys a Gaussian
distributionN(0,1), Eq.~13! is averaged over all of the syn
aptic connections.

Thus, the nonlinear function shown in Fig. 2,

f 2~z,t !5H z, uzu.t

0 otherwise,
~18!

is also obtained. The deletion by this nonlinear function
called minimal value deletion. Similarly, by adding the co
dition that the total strength of synaptic connecti
*Dzu f (z)u is constant, the nonlinear function

f 3~z,t !5H z2sgn~z!t, uzu.t

0 otherwise

5 f 2~z,t !2t f 1~z,t ! ~19!

is obtained. The deletion by this nonlinear function is call
compressed deletion. We discuss systematic deletion by
ing these three types of nonlinear functionsf 1(z,t), f 2(z,t),
and f 3(z,t) given by Chechiket al. @15#.

III. RESULTS

In this section, the results concerning the multiplicati
synaptic noise, the random deletion, and the nonlinear s

FIG. 3. Compressed deletion.
0-3
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MIMURA, KIMOTO, AND OKADA PHYSICAL REVIEW E 68, 031910 ~2003!
apse are shown, at the limit where the effect of these d
tions is extremely large.

The SCSNA starts from the fixed-point equations for t
dynamics of anN-neuron network as Eq.~1!. The results of
the SCSNA for the symmetric additive synaptic noise
summarized by the following order-parameter equations~see
Appendix A!:

m5
1

12a2E Dz^~j2a!Y~z;j!&j , ~20!

q5E Dz^Y~z;j!2&j , ~21!

U5
1

sE Dz ẑ Y~z;j!&j , ~22!

s25
aJ2q

~12JU!2
1

J2

~12a2!2
DA

2q, ~23!

Y~z;j!5FS J~j2a!m1sz1h

1F aJ2U

12JU
1

J2

~12a2!2
DA

2 GY~z;j!D , ~24!

where^•••&j implies averaging over the target pattern andm
is the overlap between the first memory patternj1 and the
equilibrium statex defined as

m5
1

N~12a2!
(
i 51

N

~j i
12a!xi ; ~25!

note that generality is kept even if the overlap was defined
only the first memory pattern,q is Edwards-Anderson orde
parameter,U is a kind of the susceptibility, which measure
the sensitivity of neuron output with respect to the exter
input, Y(z;j) is an effective response function, ands2 is the
variance of the noise. We set the output functionF(x)
5sgn(x)2a in the following sections, where domain of th
x variable isF(x)512a whenx<0, otherwiseF(x)521
2a.

According to Okadaet al. @16#, the symmetric additive
synaptic noise, the symmetric random deletion, and the n
linear synapse can be transformed into the symmetric m
plicative synaptic noise as follows~see Appendix B!: the
additive synaptic noise is

DM
2 5

DA
2

a~12a2!2
, ~26!

the random deletion is

DM
2 5

12c

c
, ~27!

and the nonlinear synapse is
03191
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DM
2 5

J̃2

J2
21, ~28!

whereJ,J̃2 are

J5E Dz z f~z!, ~29!

J̃25E Dz f~z!2. ~30!

In the following sections, symmetries of the additive syna
tic noise, the multiplicative synaptic noise, and random
letion are assumed. Storage capacity can be obtained
solving the order-parameter equations.

Figure 4 showsm(a) curves in the random deletion ne
work with the number of neuronsN53000 and the firing rate
f 50.1 for the connecting ratesc50.1, c50.3, andc51.0.
It can be confirmed that the theoretical results of the SCS
are in good agreement with the computer simulation res
from Fig. 4. Since it is known that theoretical results o
tained by means of the SCSNA are generally in good ag
ment with the results obtained through the computer simu
tions using various models that include synaptic noise,
treat the results by means of the SCSNA only@16,20–26#.

Through the relationships of Eqs.~26!–~30!, the symmet-
ric additive synaptic noise, the symmetric random deleti
and the nonlinear synapse can be discussed in terms o
symmetric multiplicative synaptic noise. Therefore, first
all, we deal with the multiplicative synaptic noise.

A. Multiplicative synaptic noise

Figure 5 shows the dependence of storage capacity on
multiplicative synaptic noise. As it is clear from Fig. 5, sto
age capacityac is inversely proportional to the variance o
the multiplicative synaptic noiseDM

2 , when the multiplica-
tive synaptic noise is extremely large. Storage capacityac
asymptotically approaches

FIG. 4. Overlaps in the random deletion network. The curv
represent the theoretical results. The dots represent simulatio
sults with N53000 andf 50.1 for the connecting ratesc50.1, c
50.3, andc51.0.
0-4
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ac5
2

pDM
2

~31!

~see Appendix C!. In the sparse limit where the firing rate
extremely small, it is known that storage capacity becom
ac.1/( f u ln fu) @18,20,28–30#.

Figure 5 shows the results from the SCSNA and the
ymptote at the firing ratef 50.5. Figure 6 shows the resul
from the SCSNA at various firing rates. It can be confirm
that the order of the asymptoteO(1/DM

2 ) does not depend on
the firing rate from Fig. 6.

B. Random deletion

Next, we discuss the asymptote of the random delet
The random deletion with the connecting ratec can be trans-
formed into the multiplicative synaptic noise by Eq.~27!.
Hence, at the limit where the connecting ratec is extremely
small, storage capacity becomes

ac5
2

pDM
2

5
2c

p~12c!
→ 2

p
c, ~32!

FIG. 5. Dependence of storage capacityac on the multiplicative
synaptic noiseDM

2 at the firing ratef 50.5. Comparison of asymp
tote and the results from the SCSNA.

FIG. 6. Dependence of storage capacityac on the multiplicative
synaptic noiseDM

2 . It can be confirmed that the order of the asym
tote does not depend on the firing rate.
03191
s
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according to the asymptote of the multiplicative synap
noise in Eq.~31!. In the random deletion, the synapse ef
ciency Se f f , which is storage capacity per the connecti
rate @14,16#, i.e., storage capacity per the input of one ne
ron, and defined as

Se f f[
ac

c
, ~33!

approaches a constant value as

Se f f5
ac

c
5

2

p
, ~34!

according to Eq.~32! at the limit where the connecting ratec
is extremely small.

Figure 7 shows the result from the SCSNA and the
ymptote at the firing ratef 50.5. Figure 8 shows the result
from the SCSNA at various firing rates. It can be confirm
that the order of the asymptote,O(1) with respect toc, does
not depend on the firing rate from Fig. 8.

FIG. 7. Dependence of the synapse efficiencySe f f on the ran-
dom deletion with the connecting ratec at the firing ratef 50.5.
Comparison of asymptote and the results from the SCSNA.

FIG. 8. Dependence of the synapse efficiencySe f f on the ran-
dom deletion with the connecting ratec at various firing rates. It can
be confirmed that the order of the asymptote does not depend o
firing rate.
0-5
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C. Systematic deletion

1. Clipped synapse

Synapses within the range2t,z,t are pruned by the
nonlinear function of Eq.~14!.

The connection ratec of the synaptic deletion in Eq.~13!
is given by

c5E
$zu f 1(z,t)Þ0%

Dz

512erfS t

A2
D→A2

p
t21 expS 2

t2

2 D , t→`, ~35!

since the synaptic connectionTi j before the action of the
nonlinear function of Eq.~13! obeys the Gaussian distribu
tion N(0,1). Next,J,J̃ of Eqs.~29! and ~30! become

J52E
t

`

Dz zsgn~z!5A2

p
expS 2

t2

2 D→tc, t→`,

~36!

J̃252E
t

`

Dz512erfS t

A2
D 5c. ~37!

Hence, the equivalent multiplicative synaptic noiseDM
2 is

obtained as

DM
2 5

J̃2

J2
21→ 1

t2c
, t→`. ~38!

The relationship of the pruning ranget and the connecting
ratec,

t2522 lnc, ~39!

is obtained by taking the logarithm of Eq.~35! at t→` limit.
Therefore, at the limit where the equivalent connecting rac
is extremely small, storage capacityac can be obtained,

ac52
4

p
c ln c, ~40!

through Eqs.~31!, ~38!, and ~39!. The synapse efficiency
becomes

Se f f5
ac

c
52

4

p
ln c. ~41!

Figure 9 shows the results from the SCSNA and the asy
tote at the firing ratef 50.5. Figure 10 shows the resul
from the SCSNA at various firing rates. It can be confirm
that the order of the asymptoteO(ln c) does not depend on
the firing rate from Fig. 10.
03191
p-
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2. Minimal value deletion

In a similar way, the equivalent multiplicative synapt
noiseDM

2 of the systematic deletion of Eq.~18! is obtained as
follows:

DM
2 5

J̃2

J2
21→ 1

t2c
, t→`, ~42!

where the connecting ratec andJ,J̃ of Eqs.~29! and~30! are

c5E
$zu f 2(z,t)Þ0%

Dz512erfS t

A2
D

→A2

p
t21 expS 2

t2

2 D , t→`, ~43!

J5A2

p
t expS 2

t2

2 D112erfS t

A2
D

→A2

p
t expS 2

t2

2 D , t→`, ~44!

FIG. 9. Dependence of the synapse efficiencySe f f with the
clipped synapse on the connecting ratec at f 50.5. Comparison of
the results from the SCSNA and asymptote.

FIG. 10. Dependence of the synapse efficiencySe f f with the
clipped synapse on the firing ratef. It can be confirmed that the
order of the asymptote does not depend on the firing rate.
0-6
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J̃25J, ~45!

respectively. Hence, at the limit where the equivalent c
necting ratec is extremely small, storage capacityac and the
synapse efficiencySe f f can be obtained through Eqs.~31!,
~42!, and~39! as follows:

ac52
4

p
c ln c, ~46!

Se f f52
4

p
ln c, ~47!

respectively. Figure 11 shows the results from the SCS
and the asymptote at the firing ratef 50.5. Figure 12 shows
the results from the SCSNA at various firing rates. It can
confirmed that the order of the asymptote does not depen
the firing rate from Fig. 12.

FIG. 11. Dependence of the synapse efficiencySe f f with the
minimal value deletion on the connecting ratec at time f 50.5.
Comparison of the results from the SCSNA and the asymptote

FIG. 12. Dependence of the synapse efficiencySe f f with the
minimal value deletion on the firing ratef. It can be confirmed tha
the order of the asymptote does not depend on the firing rate.
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3. Compressed deletion

Again, in the similar way, the equivalent multiplicativ
synaptic noiseDM

2 of the systematic deletion of Eq.~19! is
given by

DM
2 5

J̃2

J2
21→ 2

t2c
, t→`, ~48!

where the connecting ratec andJ,J̃ of Eqs.~29! and~30! are

c5E
$zu f 3(z,t)Þ0%

Dz512erfS t

A2
D

→A2

p
t21 expS 2

t2

2 D , t→`, ~49!

J5c, ~50!

J̃25E
2`

`

Dz f2~z,t !21t2E
2`

`

Dz f1~z,t !2

22tE
2`

`

Dz f1~z,t ! f 2~z,t !

5FA2

p
t expS 2

t2

2 D112erfS t

A2
D G1t2F12erfS t

A2
D G

22tFA2

p
expS 2

t2

2 D G
→ 2c

t2
, t→`, ~51!

respectively. Here, we use an asymptotic expansion equa
of the error function

erf~x!512
e2x2

Ap
S 1

x
2

1

2x3
1

3

4x5
2O~x27!D , ~52!

FIG. 13. Dependence of the synapse efficiencySe f f with the
compressed deletion on the connecting ratec at f 50.5. Comparison
of the results from the SCSNA and the asymptote.
0-7
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MIMURA, KIMOTO, AND OKADA PHYSICAL REVIEW E 68, 031910 ~2003!
for x@1. In order for the first term and the second term
Eq. ~51! to be of the same order, the asymptotic expans
equation has taken the approximation ofO(t23) and
O(t25), respectively. The equivalent multiplicative synap
noise in the case of systematic deletion becomes double
of the clipped synapse of Eq.~38! and the minimal value
deletion of Eq.~48!. Therefore, at the limit where the equiva
lent connecting ratec is extremely small, storage capacityac
and the synapse efficiencySe f f can be obtained through Eq
~31!, ~48!, and~39! as follows:

ac52
2

p
c ln c, ~53!

Se f f52
2

p
ln c, ~54!

respectively. Figure 13 shows the results from the SCS
and the asymptote at the firing ratef 50.5. Figure 14 shows
the results by the SCSNA at various firing rates. It can

FIG. 15. Comparison of the synapse efficiency with the rand
deletion and that with the systematic deletion at the firing ratf
50.5.

FIG. 14. Dependence of the synapse efficiencySe f f with the
compressed deletion on the firing ratef. It can be confirmed that the
order of the asymptote does not depend on the firing rate.
03191
f
n

at

A

e

confirmed that the order of the asymptoteO(ln c) does not
depend on the firing rate from Fig. 14.

Figure 15 shows the dependence of the synapse efficie
Se f f on the connecting ratec obtained by means of the
SCSNA. Table I shows the asymptote of storage capa
with the random deletion~rd! and the systematic deletio
~sd!. Hence, when using minimal value deletion as the s
plest from of systematic deletion we found that the syna
efficiency ~Table II! in the case of systematic deletion b
comes

Se f f(sd)

Se f f(rd)
5

~4/p! u ln cu
2/p

52u ln cu; ~55!

thus we have shown analytically that the synapse efficie
in the case of systematic deletion diverges asO(u ln cu) at the
limit where the connecting ratec is extremely small, and
have also shown that the synapse efficiency in the case o
systematic deletion becomes 2u ln cu times as large as that o
the random deletion.

IV. THE MEMORY PERFORMANCE UNDER LIMITED
METABOLIC ENERGY RESOURCES

Until the preceding section, we have discussed the ef
of synaptic pruning by evaluating the synapse efficien
which is the memory capacity normalized by connecting r
c. When the connecting rate isc, the synapse number per on
neuron decreases tocN. Therefore, the synapse efficienc
means the capacity per the input of one neuron. In the
cussion on the synapse efficiency, the synapse number
creases when the connecting rate is small.

In addition to such fixed neuron number criterion, a fix
synapse number criterion could be discussed. At the syna

TABLE I. Asymptote of storage capacity by the random de
tion and by the systematic deletion at the firing ratef 50.5.

Types of deletion Storage capacity
~Asymptote!

Random deletion (2/p)c
Systematic deletion clipped synapse (4/p)cu ln cu

Minimal value deletion (4/p)cu ln cu
Compressed deletion (2/p)cu ln cu

TABLE II. Asymptote of the synapse efficiency by the rando
deletion and the systematic deletion at the firing ratef 50.5.

Types of deletion Synapse efficiency
~Asymptote!

Random deletion (2/p)
Systematic deletion clipped synapse (4/p)u ln cu

Minimal value deletion (4/p)u ln cu
Compressed deletion (2/p)u ln cu
0-8
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growth stage, it is natural to assume that metabolic ene
resources are restricted. When metabolic energy resou
are limited, it is also important that the effect of synap
pruning is discussed under limited synapse number. Che
et al. discussed the memorized pattern number per one
apse under a fixed synapse number criterion@15#. They
pointed out the existence of an optimal connecting rate un
the fixed synapse number criterion and suggested an ex
nation of synaptic pruning as follows: synaptic pruning fo
lowing overgrowth can improve the performance of a n
work with limited synaptic resources.

The synapse number isN2 in the full connected casec
51. We consider the larger network withM (.N) neurons.
The synapse number in the larger networks with the conn
ing ratec becomescM2. We can introduce the fixed synaps
number criterion by considering a larger network which h
M neurons, i.e.,

N25cM2 ~56!

synapses at the connecting ratec. The memorized pattern
number per one synapse becomes

pc

cM2
5

pc

N2
5

ac

N
5

ac

AcM
, ~57!

where the critical memorized pattern numberpc is

pc5acN. ~58!

We define the coefficientac /Ac as memory performance
We discuss the effect of synaptic pruning by the mem
performance. Under limited metabolic energy resources,
optimal strategy is the maximization of the memory perf
mance. Chechiket al. showed the existence of the optim
connecting rate which maximizes memory performance@15#.
The memory performance can be calculated by normaliz
the capacity, which is given by solving the order-parame
equations, withAc. Figure 16 shows the dependence of t

FIG. 16. Memory performanceac /Ac of networks with differ-
ent number of neurons but the same total number of synapses
function of the connecting ratec in the case of clipped synapse~the
solid line!, minimal value deletion~the dotted line!, and compressed
deletion~the dashed line!.
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memory performance on the connecting rate in three type
pruning. It is confirmed that there are optimal values wh
maximized the memory performance by each deleti
The optimal connecting rates of clipped synapse, minim
value deletion, and compressed deletion arec
50.036,0.038,0.084, respectively. This interesting fact m
imply that the memory performance is improved witho
heavy pruning. These optimal values agree with the co
puter simulation results given by Chechiket al. @15#.

V. CONCLUSION

We have analytically discussed the synapse efficien
which we regarded as the autocorrelation-type associa
memory, to evaluate the effect of the pruning following ove
growth. Although Chechiket al. pointed out that the synaps
efficiency is increased by the systematic deletion, this
qualitatively obvious and the increase in the synapse e
ciency should also be discussed quantitatively. At the lim
where the multiplicative synaptic noise is extremely larg
storage capacityac varies inversely as the variance of th
multiplicative synaptic noiseDM

2 . From this result, we ana
lytically obtained that the synapse efficiency in the case
the systematic deletion diverges asO(u ln cu) at the limit
where the connecting ratec is extremely small.

On the other hand, it is natural to assume that metab
energy resources are restricted at the synaptic growth st
When metabolic energy resources are limited, i.e., syna
number is limited, the optimal connecting rate that ma
mizes memory performance exists. These optimal values
in agreement with the results given by Chechiket al. @15#.

In the correlation learning, which can be considered
prototype of any other learning rules, various properties
be analyzed quantitatively. The asymptote of synapse e
ciency in the model with another learning rule can be d
cussed in a similar way. As our future work, we plan
further discuss these properties while taking into acco
various considerations regarding related physiologi
knowledge.
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APPENDIX A: SCSNA FOR ADDITIVE SYNAPTIC NOISE

Derivations of the order-parameter equations~20!–~24!
are given here. The SCSNA starts from the fixed-point eq
tions for the dynamics of theN-neuron network shown as Eq
~1!. The random memory patterns are generated accordin
the probability distribution of Eq.~2!. The synaptic connec
tions are given by Eq.~4!. The asymmetric additive synapti
noised i j and d j i are independently generated according

s a
0-9
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the probability distribution of Eq.~7!. Moreover, we can ana
lyze a more general case, whered i j andd j i have an arbitrary
correlation such that

Cov@d i j ,d j i #5kd

J2

N~12a2!2
DA

2 , 21<kd<1. ~A1!

In this general case, the symmetric and the asymmetric
ditive synaptic noise correspond tokd51 andkd50, respec-
tively. Here, we assume that the probability distribution
the additive synaptic noise is normal distribution

d i j ;NS 0,
J2

N~12a2!2
DA

2 D .

However, any probability distributions, which have same
erage and variance, can be discussed by the central
theorem in the similar way as in the following discussio
Defining the loading rate asa5p/N, we can write the local
field hi for neuroni as

hi[(
j Þ i

N

Ji j xj5J (
m51

aN

~j i
m2a!mm1(

j Þ i

N

d i j xj2Jaxi ,

~A2!

wheremm is the overlap between the stored patternjm and
the equilibrium statex defined by

mm5
1

N~12a2!
(
i 51

N

~j i
m2a!xi . ~A3!

The second term includingxj5F(hj1h) in Eq. ~A2! de-
pends ond j i . The d i j dependences ofxj are extracted from
xj ,

xj5xj
(d j i )1d j i xix8 j

(d j i ) , ~A4!

where

xj
(d j i )5F~hj2d j i xi !, ~A5!

x8 j
(d j i )5F8~hj2d j i xi !. ~A6!

Substituting Eq.~A4! into Eq. ~A2!, the local fieldhi can be
expressed as

hi5J (
m51

aN

~j i
m2a!mm1(

j Þ i

N

d i j xj
(d j i )2Jaxi

1xi(
j Þ i

N

d i j d j i x8 j
(d j i ) . ~A7!

We assume that Eq.~A7! andxi5F(hi1h) can be solved by
using the effective response functionF̃(u) as

xi5F̃S J (
m51

p

~j i
m2a!mm1(

j Þ i

N

d i j xj
(d j i )D . ~A8!
03191
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Let j1 be the target pattern to be retrieved. Therefore, we
assume thatm15O(1) andmm5O(1/AN),m.1. Then we
can use the Taylor expansion to obtain

mm5
1

N~12a2!
(
i 51

N

~j i
m2a!xi

(m)

1
J

N~12a2!
(
i 51

N

~j i
m2a!2mmx8 i

(m)

5
1

N~12a2!
(
i 51

N

~j i
m2a!xi

(m)1JUmm

5
1

N~12a2!~12JU!
(
i 51

N

~j i
m2a!xi

(m) , ~A9!

by substituting Eq.~A8! into the overlap defined by Eq
~A3!, where

xi
(m)5F̃S J (

nÞm

aN

~j i
n2a!mn1(

j Þ i

N

d i j xj
(d j i )D , ~A10!

x8 i
(m)5F̃8S J (

nÞm

aN

~j i
n2a!mn1(

j Þ i

N

d i j xj
(d j i )D , ~A11!

U5
1

N (
i 51

N

x8 i
(m) . ~A12!

Equations~A7! and ~A9! give the following expression for
the local field:

hi5J~j i
12a!m11aF J2

12JU
1kd

J2

~12a2!2
DA

2 GUxi

1
J

N~12a2!~12JU!
(
j Þ i

N

(
m52

aN

~j i
m2a!~j j

m2a!xj
(m)

1(
j Þ i

N

d i j xj
(d j i ) . ~A13!

Note that the second term in Eq.~A13! denotes the effective
self-coupling term. The third and the last terms are summ
tions of uncorrelated random variables, with mean 0 a
variance,

J2

N2~12a2!2~12JU!2 (
j Þ i

N

(
m52

aN

~j i
m2a!2~j j

m2a!2~xj
(m)!2

5
aJ2

~12JU!2
q, ~A14!

(
j Þ i

N

d i j
2 ~xj

(d j i )!25
J2

~12a2!2
DA

2q, ~A15!

respectively. The cross term of these terms has vanis
Thus, we finally obtain
0-10
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hi5J~j i
12a!m11szi1F aJ2

12JU
1kd

J2

~12a2!2
DA

2 GUxi ,

~A16!

s25
aJ2q

~12JU!2
1

J2

~12a2!2
DA

2q, ~A17!

from Eqs. ~A14! and ~A15!, where zi;N(0,1). Equation
~23! is given by Eq.~A17!. Finally, after rewritingj i

1→j,
m1→m, zi→z, andxi→Y(z;j), the results of the SCSNA
for the additive synaptic noise are summarized by the ord
parameter equations of Eqs.~20!–~22! as

m5
1

12a2E Dz^~j2a!Y~z;j!&j ,

q5E Dz^Y~z;j!2&j ,

U5
1

sE Dz ẑ Y~z;j!&j ,

where the effective response functionY(z;j) becomes

Y~z;j!5FS J~j2a!m1sz1h1F aJ2

12JU

1kd

J2

~12a2!2
DA

2 GUY~z;j!D . ~A18!

The effective response function of Eq.~24! can be obtained
by substitutingkd51 into Eq.~A18!.

APPENDIX B: EQUIVALENCE AMONG THREE TYPES
OF NOISE

The multiplicative synaptic noise, the random synap
deletion, and the nonlinear synapse can be discussed in
similar manner to Appendix A.

1. Multiplicative synaptic noise

Derivations of the equivalent noise, Eq.~26!, is given
here. We can also analyze by a similar manner to the ana
of the additive synaptic noise. The synaptic connections
given by Eq. ~8!. The asymmetric multiplicative synapti
noise« i j and « j i are independently generated according
the probability distribution of Eq.~9!. We analyze a more
general case, whered i j andd j i have an arbitrary correlation
such that

Cov@« i j ,« j i #5k«DM
2 , 21<k«<1. ~B1!

In this general case, the symmetric and the asymmetric m
tiplicative synaptic noise correspond tok«51 and k«50,
respectively. Here, we assume that the probability distri
tion of the multiplicative synaptic noise is normal distrib
tion « i j ;N(0,DM

2 ). The local fieldhi for neuroni becomes
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hi5 (
m51

aN

~j i
m2a!mm

1
1

N~12a2!
(
m51

aN

(
j Þ i

N

« i j ~j i
m2a!~j j

m2a!xj2axi ,

~B2!

wheremm is the overlap defined by Eq.~A3!. The second
term includingxj5F(hj1h) in Eq. ~B2! depends on« j i .
The« i j dependences andj j

m dependences ofxj are extracted
from xj ,

xj5xj
(m)(« j i )1hj

$m,« j i %x8 j
(m)(« j i ) , ~B3!

hj
$m,« j i %5~j j

m2a!mm1
1

N~12a2!
(
kÞ j

N

« jk~j j
m2a!~jk

m2a!xk

1
« j i

N~12a2!
(
nÞm

aN

~j j
n2a!~j i

n2a!xi

1
« j i

N~12a2!
~j j

m2a!~j i
m2a!xi , ~B4!

where

xj
(m)(« j i )5F~hj2hj

$m,« j i %!, ~B5!

x8 j
(m)(« j i )5F8~hj2hj

$m,« j i %!. ~B6!

We assume that Eq.~B2! andxi5F(hi1h) can be solved by
using the effective response functionF̃(u) as

xi5F̃S (
m51

p

~j i
m2a!mm1

1

N~12a2!
(
m51

aN

(
j Þ i

N

« i j ~j i
m2a!

3~j j
m2a!xj

(m)(« j i )D . ~B7!

Let j1 be the target pattern. We substitute Eq.~B7! into the
overlap defined by Eq.~A3! and expand the resultant expre
sion by (j i

m2a)mm (m.1), which has the order o
O(1/AN). This leads to

mm5
1

N~12a2!~12U !
(
i 51

N

~j i
m2a!xi

(m) , ~B8!

where
0-11
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xi
(m)5F̃S (

nÞm

aN

~j i
n2a!mn1

1

N~12a2!
(
nÞm

aN

(
j Þ i

N

« i j ~j i
n2a!

3~j j
n2a!xj

(n)(« j i )D , ~B9!

andU is defined by the similar way to Eq.~A12! in the case
of the additive synaptic noise. Equations~B2!, ~B3!, and
~B8! give

hi5~j i
12a!m11aF 1

12U
1k«DM

2 GUxi

1
1

N~12a2!~12U !
(
j Þ i

N

(
m52

aN

~j i
m2a!~j j

m2a!xj
(m)

1
1

N~12a2!
(
m51

aN

(
j Þ i

N

« i j ~j i
m2a!~j j

m2a!xj
(m)(« j i ) .

~B10!

The third and last terms can be regarded as the noise te
The variance of the noise terms becomes

s25
aq

~12U !2
1aDM

2 q. ~B11!

Thus, after rewritingj i
1→j and m1→m, we obtain the ef-

fective response function:

Y~z;j!5FS ~j2a!m1sz1h

1aF 1

12U
1k«DM

2 GUY~z;j! D . ~B12!

Finally, the equivalence between the multiplicative synap
noise and the additive synaptic noise is obtained as follo

J51, ~B13!

DA
25a~12a2!2DM

2 , ~B14!

kd5k« , ~B15!

by comparing Eqs.~B11! and~B12! to Eqs.~A17! and~A18!.

2. Random deletion

Derivations of the equivalent noise, Eq.~27!, is given
here. The random deletion has similar effects to the multi
cative synaptic noise. Therefore, we analyze by a sim
way to the analysis of the multiplicative synaptic noise. T
synaptic connections are given by Eq.~10!. The asymmetric
cut coefficients are independently generated according to
probability distribution of Eq.~11!. We analyze a more gen
eral case, whereci j andcji have an arbitrary correlation suc
that
03191
s.

c
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r

e
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Cov@ci j ,cji #5kcVar@ci j #, 21<kc<1, ~B16!

Var@ci j #5E@~ci j !
2#2~E@ci j # !25c~12c!. ~B17!

In this general case, the symmetric and the asymmetric
dom deletion correspond tokc51 andkc50, respectively.
According to a similar analysis of the multiplicative synap
noise, the local field becomes

hi5~j i
12a!m11aF 1

12U
1

kc~12c!

c GUxi

1
1

N~12a2!~12U !
(
j Þ i

N

(
m52

aN

~j i
m2a!~j j

m2a!xj
(m)

1
1

Nc~12a2!
(
m51

aN

(
j Þ i

N

~ci j 2c!

3~j i
m2a!~j j

m2a!xj
(m)(cji ) , ~B18!

where

xj
(m)(cji )5F~hj2hj

$m,cji %!, ~B19!

xi
(m)5F̃S (

nÞm

aN

~j i
n2a!mn1

1

Nc~12a2!
(
nÞm

aN

(
j Þ i

N

~ci j 2c!

3~j i
n2a!~j j

n2a!xj
(n)(cji )D , ~B20!

hj
$m,cji %5~j j

m2a!mm1
1

Nc~12a2!
(
kÞ j

N

~cjk2c!~j j
m2a!

3~jk
m2a!xk1

cji 2c

Nc~12a2!
(
nÞm

aN

~j j
n2a!~j i

n2a!xi

1
cji 2c

Nc~12a2!
~j j

m2a!~j i
m2a!xi , ~B21!

andU is defined by Eq.~A12! similarly. The variance of the
noise term is given by

s25
aq

~12U !2
1a

12c

c
q. ~B22!

Thus, after rewritingj i
1→j and m1→m, the effective re-

sponse function becomes

Y~z;j!5FS ~j2a!m1sz1h

1aF 1

12U
1

kc~12c!

c GUY~z;j! D . ~B23!

Finally, the equivalence between random deletion and
additive synaptic noise is obtained as follows:
0-12
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J51, ~B24!

DA
25a~12a2!2

12c

c
, ~B25!

kd5kc , ~B26!

by comparing Eqs.~B22! and ~B23! to Eqs. ~A17! and
~A18!. Substituting Eq.~B25! into Eq. ~B14!, we obtain the
equivalence of Eq.~27!.

3. Nonlinear synapse

Derivations of the equivalent noise, Eq.~28!, is given
here. The effect of the nonlinear synapse can be separ
into a signal part and a noise part. The noise part can
regarded as the additive synaptic noise.

The systematic deletion of synaptic connections can
achieved by introducing synaptic noise with an appropri
nonlinear functionf (x) @14#. Note thatTi j obeys the norma
distributionN(0,1) for p5aN→`. According to this naive
S/N analysis@16#, we can write the connections as

Ji j 5
Ap

N
f ~Ti j !5

J

N~12a2!
(
m51

p

~j i
m2a!~j j

m2a!

2FAp

N
f ~Ti j !2

J

N~12a2!
(
m51

p

~j i
m2a!~j j

m2a!G
5

Ap

N
$JTi j 2@ f ~Ti j !2JTi j #%. ~B27!

The following derivation suggests that the residual over
mm for the first term in Eq.~B27! is enhanced by a factor o
1/(12JU), while any enhancement to the last part is ca
celed because of the subtraction. It also implies that the
part corresponds to the synaptic noise. For the SCSNA of
nonlinear synapse, we can analyze by a similar manner to
analysis of the additive synaptic noise. We obtain the lo
field:

hi5J~j i
12a!m11aF J2

12JU
1~ J̃22J2!GUxi

1
Ap

N (
j Þ i

@ f ~Ti j !2JTi j #xj
(Tji )

1
J

N~12a2!~12JU!
(
m52

p

(
j Þ i

N

~j i
m2a!~j j

m2a!xj
(m) ,

~B28!

where

xi
(m)5F̃S J (

nÞm

p

~j i
n2a!mn

1
Ap

N (
j Þ i

N

@ f ~Ti j
(m)!2JTi j

(m)#xj
(Tji )D , ~B29!
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xj
(Tji )5FS hj2

Ap

N
@ f ~Tji !2JTji #xi D , ~B30!

Ti j
(m)5

1

Ap~12a2!
(
nÞm

p

~j i
n2a!~j j

n2a!, ~B31!

andU is defined by Eq.~A12! similarly. The variance of the
noise term is given by

s25
aJ2q

~12JU!2
q1a~ J̃22J2!. ~B32!

Thus, after rewritingj i
1→j and m1→m, the effective re-

sponse function becomes

Y~z;j!5FS J~j2a!m1sz1h

1aF J2

12JU
1~ J̃22J2!GUY~z;j! D . ~B33!

Finally, the equivalence between the nonlinear synapse
the additive synaptic noise is obtained as follows:

DA
25a~12a2!2S J̃2

J2
21D , ~B34!

J5E Dx x f~x!, ~B35!

J̃25E Dx f~x!2, ~B36!

by comparing Eqs.~B32! and ~B33! to Eqs. ~A17! and
~A18!. Substituting Eq.~B34! into Eq. ~B14!, we obtain the
equivalence of Eq.~28!.

APPENDIX C: ASYMPTOTE FOR LARGE
MULTIPLICATIVE SYNAPTIC NOISE

Derivations of the asymptote of storage capacity in a la
multiplicative synaptic noiseDM are given here.

In Eqs. ~20!–~22!, let a50, J51, and F(x)5sgn(x),
then the order-parameter equations become

m5erfS m

A2s
D , ~C1!

q51, ~C2!

U5
1

s
A2

p
expS 2

m2

2s2D , ~C3!

the threshold becomesh50, the effective response functio
of Eq. ~24! and the variance of the noise become

Y~z;j!5sgn~jm1sz!, ~C4!
0-13



is

er

c
tic

MIMURA, KIMOTO, AND OKADA PHYSICAL REVIEW E 68, 031910 ~2003!
s25
a

~12U !2
1DA

2 , ~C5!

respectively, where the error function erf(x) is defined as

erf~x!5
2

Ap
E

0

x

e2u2
du. ~C6!

The slope of the right-hand side~rhs! of Eq. ~C1! is given by

d

dm
erfS m

A2s
D 5

1

s
A2

p
expS 2

m2

2s2D . ~C7!

Equation~C1! has nontrivial solutionsmÞ0 within the range
where the slope of the rhs of Eq.~C7! at m50 is greater than
1. Therefore, the critical value of the noisesc

2 is given by

sc
252/p. ~C8!

This shows that a retrieval phase exists only fors,sc . We
define the parametert(,1) as

t5
s

sc
~C9!

to solve form as a function ofs in the vicinity of this critical
valuesc . The critical value of the additive synaptic noise
discussed in the case oft.1. The overlapm shows the
first-order phase transition whenDA is small, but it is re-
garded as the second-order phase transition at largeDA re-
gion. The overlap becomesm!1 whent.1 andDA is suf-
ficiently large, therefore the nontrivial solution ofm is given
as

m.
m

t
2

m3

6s2t
1O~m4!5sctA6~12t!, ~C10!

by Taylor expansion including terms up to the third ord
Substituting Eq.~C10! into Eq. ~C3!, U becomes
de

ra

v.

03191
.

U.
1

t S 12
m2

2s2D 1O~m4!5322t21. ~C11!

From Eq. ~26!, the variance of the multiplicative synapti
noiseDM

2 is related to the variance of the additive synap
noiseDA

2 as

DA
25aDM

2 , ~C12!

when biasa50. Therefore, substituting Eqs.~C11! and
~C12! into Eq. ~C5!, the variance of the noises is given as

s25
at2

4~12t!2
1aDM

2 . ~C13!

The loading ratea becomes

a5
8

p

t2~12t!2

t214DM
2 ~12t2!

. ~C14!

When the overlap is small enough, i.e.,m!1, the order-
parameter equations of Eqs.~C1!–~C5! reduce to Eq.~C14!.
Solving Eq. ~C14! for the fixed value ofa and DM , we
obtain the parametert. Substitutingt into Eq.~C10!, we can
obtain the overlapm for given a andDM . It is easily con-
firmed that thet increases witha for the fixed value ofDM .
This means that the maximal value oft which holds, Eq.
~C14! corresponds to the maximum value ofa, that is, stor-
age capacityac . The critical valuetc is equal to the value
which maximizes the loading rate of Eq.~C14! and becomes

tc5
~2DM !2/3

11~2DM !2/3
.12~2DM !22/3, ~C15!

in a largeDM limit. Therefore, substituting Eq.~C15! into
Eq. ~C14!, we obtain Eq.~31! as follows:

ac5
2

pDM
2

. ~C16!
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