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Statistical mechanics is applied to lossy compression using multilayer perceptrons for unbiased Boolean
messages. We utilize a treelike committee machine �committee tree� and treelike parity machine �parity tree�
whose transfer functions are monotonic. For compression using a committee tree, a lower bound of achievable
distortion becomes small as the number of hidden units K increases. However, it cannot reach the Shannon
bound even where K→�. For a compression using a parity tree with K�2 hidden units, the rate distortion
function, which is known as the theoretical limit for compression, is derived where the code length becomes
infinity.
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I. INTRODUCTION

Cross-disciplinary fields that combine information theory
with statistical mechanics have developed rapidly in recent
years and achievements in these have become the center of
attention. The employment of methods derived from statisti-
cal mechanics has resulted in significant progress in provid-
ing solutions to several problems in information theory, in-
cluding problems in error correction �1–4�, spreading codes
�5,6�, and compression codes �7–10�. Above all, data com-
pression plays an important role as one of the base technolo-
gies in many aspects of information transmission. Data com-
pression is generally classified into lossless compression and
lossy compression �12–14�. Lossless compression is aimed at
reducing the size of the message under the constraint of per-
fect retrieval. In lossy compression, on the other hand, the
length of the message can be reduced by allowing a certain
amount of distortion. The theoretical framework for the lossy
compression scheme is called the rate distortion theory,
which consists partly of Shannon’s information theory
�12,13�.

Several lossy compression codes, whose schemes saturate
the rate distortion function that represents an optimal perfor-
mance, were discovered in the case where the code length
becomes infinity. For instance, the low density generator ma-
trix �LDGM� code �7,8� and using a nonmonotonic percep-
tron �9–11� were proposed. In these compression codes, a
decoder is first defined to retrieve a reproduced message
from a codeword. In the encoding problem, for a given
source message, we must find a codeword that minimizes the
distortion between the reproduced message and the source
message. Therefore, fundamentally, the computational cost
of compressing a message is of exponential order of a
codeword length. It is important to understand properties of
various lossy compression codes saturating the optimal

performance for the development of more useful codes.
Since a multilayer network includes a nonmonotonic per-

ceptron as a special case, we employ a treelike committee
machine and a parity machine as typical multilayer networks
�15–17� to lossy compression and analytically evaluate their
performance.

II. LOSSY COMPRESSION

Let us start by defining the concepts of the rate distortion
theory �14�. Let y be a discrete random variable with source
alphabet Y. We will assume that the alphabet is finite. A
source message of M random variables, y= t�y1 , . . . ,yM�
�YM, is compressed into a shorter expression, where the
operator t denotes the transpose. Here, the encoder describes
the source sequence y�YM by a codeword s=F�y��SN.
The decoder represents y by a reproduced message ŷ=G�s�
� ŶM, as illustrated in Fig. 1. Note that M represents the
length of a source sequence, while N represents the length of
a codeword. The code rate is defined by R=N /M in this case.

A distortion function is a mapping d :Y� Ŷ→R+ from the
set of source alphabet–reproduction alphabet pair into the set
of non-negative real numbers. In most cases, the reproduc-

tion alphabet Ŷ is the same as the source alphabet Y. After

this, we set Y= Ŷ. An example of common distortion
functions is the Hamming distortion given by

d�y, ŷ� = �0, y = ŷ ,

1, y � ŷ ,
�1�

which results in the probability of error distortion, since
E�d�y , ŷ��= P�y� ŷ�, where E and P represent the

*Electronic address: mimura@cs.hiroshima-cu.ac.jp FIG. 1. Rate distortion encoder and decoder.
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expectation and the probability of its argument, respectively.
The distortion between sequences y , ŷ�YM is defined by
d�y , ŷ�=��=1

M d�y� , ŷ��. Therefore the distortion associated
with the code is defined as D=E� 1

M d�y , ŷ��, where the ex-
pectation is with respect to the probability distribution on Y.
A rate distortion pair �R ,D� is said to be achievable if there
exists a sequence of rate distortion codes �F ,G� with
E� 1

M d�y , ŷ���D in the limit M→�. We can now define a
function to describe the boundary called the rate distortion
function. The rate distortion function R�D� is the infimum of
rates R such that �R ,D� is in the rate distortion region of the
source for a given distortion D and all rate distortion codes.
The infimum of rates R for a given distortion D and given
rate distortion codes �F ,G� is called the rate distortion prop-
erty of �F ,G�. We restrict ourselves to a Boolean source
Y= �0,1�. We assume that the source sequence is not biased
to rule out the possibility of compression due to redundancy.
The nonbiased Boolean message is one in which each com-
ponent is generated independently from an identical distribu-
tion P�y�=1�= P�y�=0�=1/2. For this simple source, the
rate distortion function for an unbiased Boolean source with
Hamming distortion is given by

R�D� = 1 − h2�D� , �2�

where h2�x�=−x log2�x�− �1−x�log2�1−x� is called the bi-
nary entropy function.

III. COMPRESSION USING MULTILAYER PERCEPTRONS

To simplify notations, let us replace all the Boolean rep-
resentations �0,1� with the Ising representation �1,−1�
throughout the rest of this paper. We set Y=S= Ŷ= �1,−1� as
the binary alphabets. We consider an unbiased source mes-
sage in which a component is generated independently from
an identical distribution:

P�y�� =
1

2
��y� − 1� +

1

2
��y� + 1� , �3�

for simplicity. First let us define a decoder. We can construct

a nonlinear map G :SN→ŶM from codeword s�SN to repro-

duced message ŷ= �ŷ��� ŶM. For a given source message
y= �y���YM, the role of the encoder is to find a codeword
s�SN that minimizes the distortion between its reproduced
message G�s� and the source message y.

We choose a nonlinear map G utilizing treelike multilayer
perceptrons, i.e., a treelike committee machine �committee
tree� and a treelike parity machine �parity tree�. Figure 2
shows its architecture. The codeword s is divided into
N /K-dimensional K disjoint vectors s1 , . . . ,sK�SN/K as
s= t�s1 , . . . ,sK�. The lth hidden unit receives the vector sl.
The outputs of the committee tree and the parity tree are a
majority decision and a parity of hidden unit outputs, respec-
tively. The �th bit of the reproduced message ŷ� is defined
by utilizing the committee tree as

ŷ��s� 	 sgn
�
l=1

K

f
�K

N
sl · xl

��� , �4�

where xl
�
N�0 ,1� are fixed N /K-dimensional vectors and

the map f :R→Y is a transfer function. The function sgn�x�
denotes the sign function taking 1 for x�0 and −1 for
x	0. Similarly, the �th bit ŷ� of the reproduced message is
also defined by utilizing the parity tree as

ŷ��s� 	 �
l=1

K

f
�K

N
sl · xl

�� . �5�

The decoder G from the codeword s to the reproduced mes-
sage ŷ= �ŷ�� is described as

G�s� 	 ŷ�s� = t
„ŷ1�s�, . . . , ŷM�s�… . �6�

In this framework, the encoder F from the original message
y to the codeword s can be written as

F�y� 	 argmin
ŝ

d„y,G�ŝ�… , �7�

with respect to the case of both the committee tree and the
parity tree. Employing the Ising representation, where the
length of the codeword is infinite, the average Hamming dis-
tortion can be represented as

E�d�y, ŷ�� = �
�=1

M

�1 − 
�y�ŷ��� , �8�

where the function 
�x� denotes the step function taking 1
for x�0 and 0 otherwise. Since we assume the unbiased
source message in this paper, we set f�x�=sgn�x�.

This encoding scheme is essentially the same as a learn-
ing of the multilayer perceptrons because of a following
reason. We first assign the random input vector
x�= t�x1

� , . . . ,xK
���RN to each bit of the original message y�.

The encoder must find a weight vector s that satisfies inpu–
output relations x��y� as much as possible. Then we use
this optimal weight vector s as a codeword. Therefore, in a
lossless case of D=0, an evaluation of the rate distortion
property of these codes is entirely identical to the calculation
of the storage capacity �18,19�.

FIG. 2. The architecture of treelike multilayer perceptrons with
N input units and K hidden units.
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IV. ANALYTICAL EVALUATION

We analytically evaluate the typical performance, accord-
ing to Hosaka et al. �9�, for the proposed compression
scheme using the replica method. The minimum permissible
average distortion D is calculated, when the code rate R is
fixed. For a given original message y and the input vectors
�xl

��, the number of codewords s, which provide a fixed
Hamming distortion MD=d�y , ŷ�, can be expressed as

N�D,R� = Tr
s

��MD;d„y, ŷ�s�…� , �9�

where ��m ;n� denotes Kronecker’s delta taking 1 if m=n
and 0 otherwise. Since the original message y and the input
vectors �xl

�� are randomly generated predetermined vari-
ables, the quenched average of the entropy per bit over these
parameters,

S�D,R� =
1

N
�ln N�D,R��y,x, �10�

is naturally introduced for investigating the typical proper-
ties, where � �y,x denotes the average over y and �xl

��. We
calculate the entropy S�D� by the replica method �see Appen-
dix A�. The rate-distortion region can be represented by
��D ,R� �S�D ,R��0�. Therefore a minimum code rate R for a
fixed distortion D is given by a solution of S�D ,R�=0.

Note that a minimum code rate R for D=0 coincides with
a reciprocal of the critical storage capacity of a multilayer
perceptron, i.e., the critical storage capacity �c�	M /N� can
be obtained by S�0,1 /�c�=0.

A. Replica symmetric theory of lossy compression using
committee tree

1. For general K

In the lossy compression using the committee tree, we
obtain average entropy SCT�D ,R� as

SCT�D,R� = extr
�,q,q̂


R−1�� 
�
l=1

K

Dtl�
�ln�e−� + �1 − e−��
��tl�;y���

y

+� Du ln 2 cosh�q̂u −
q̂�1 − q�

2

+ R−1�D� , �11�

where


��tl�;y� 	 Tr
��l=±1�



− y�
l=1

K

�l��
l=1

K

H�Q�ltl� , �12�

with Q	�q / �1−q� �see Appendix A 1�. The operator extr
denotes the extremum with respect to the parameters indi-
cated. For any K, we can obtain a minimum code rate R,
which gives SCT�D ,R�=0 for a fixed distortion D.

2. For large K

We concentrate in the following on the simple case of
large K, where the K-multiple integrals can be reduced to a
single Gaussian integral. We assume that the number of hid-
den units K is large but still K�N. Using the central limit
theorem, the averaged entropy is given by

SCT�D,R� = extr
�,q,q̂


R−1�� Dt ln�e−�

+ �1 − e−��H
� qef f

1 − qef f
t���

y

+� Du ln 2 cosh�q̂u −
q̂�1 − q�

2
+ R−1�D� ,

�13�

where qef f 	�Dt�1−2H�Qt��2= 2
� sin−1q and Qef f

	�qef f / �1−qef f� �see Appendix A 2�. Figure 3 shows that
the limit of achievable code rate R expected for N→� plot-
ted versus the distortion D for K=1,3 and K→�. For a fixed
code rate R, the achievable distortion decreases as the num-
ber of hidden units K increases. However, it does not saturate
Shannon’s limit even if in the limit K→�. For large K, the
Edwards-Anderson �EA� order parameter q, which means the
average overlap between different codewords, does not con-
verge to zero. Since this means that codewords are corre-
lated, the distribution of codewords is biased in SN. Note that
a nonzero EA order parameter does not mean that the repro-
duced message has a nonzero average due to the random
input vector, which has a zero average.

B. Replica symmetric theory of lossy compression
using parity tree

In the lossy compression using the parity tree, on the
other hand, we obtain averaged entropy SPT�D ,R� as

FIG. 3. The rate distortion property of lossy compression using
a committee tree. The limit of achievable code rate R expected for
N→� plotted versus the distortion D for K=1 �dotted line�, K=3
�short dashed line�, and K→� �long dashed line�. Solid line de-
notes rate-distortion function R�D� for binary sequences by
Shannon.
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SPT�D,R� = extr
�,q,q̂


R−1�� 
�
l=1

K

Dtl�
�ln�e−� + �1 − e−�����tl�;y���

y

+� Du ln 2 cosh�q̂u −
q̂�1 − q�

2

+ R−1�D� , �14�

where

���tl�;y� 	
1

2

1 + y�

l=1

K

�1 − 2H�Qtl��� . �15�

For cases utilizing a committee tree and a parity tree, only
terms 
��tl� ;y� and ���tl� ;y� are different. Since both the
order parameters q and q̂ at the saddle-point of Eq. �14� are
less than 1, the average entropy can be expanded with re-
spect to �l=1

K �1−2H�Qtl���	1�. Solutions of the saddle-point
equation derived from the expanded form of average entropy
are obtained as

q = 0,

q̂ = 0, �16�

D =
e−�

1 + e−� ,

in the case K�2 �see Appendix A 3�. For K=1, q�0 holds.
Note that for K=1, a parity tree is equivalent to a committee
tree. For K�2, the order parameter q becomes zero, namely
all codewords are uncorrelated and distributed all around in
SN. Where K�2, substituting Eq. �16� into Eq. �14�, average
entropy is obtained as

SPT�D,R� = − R−1 ln 2 + ln 2 − R−1D ln D

− R−1�1 − D�ln�1 − D� . �17�

A minimum code rate R for a fixed distortion D and K�2 is
given by SPT�D ,R�=0. Solving this equation with respect to
R, we obtain

R = 1 − h2�D� 	 RRS�D� , �18�

which is identical to the rate-distortion function for uni-
formly unbiased binary sources �2�.

However, since the calculation is based on the RS ansatz,
we verify the Almeida-Thouless �AT� stability to confirm the
validity of this solution. As the RS solution to lossy compres-
sion using a parity tree with K=2 hidden units can be simply
expressed as Eq. �16�, the stability condition is analytically
obtained as

R �
8

�2 �1 − 2D�2 	 RAT�D� , �19�

where the boundary R=RAT�D� is called the AT line �see
Appendix B�. For K�3, the replica symmetric �RS� solution
does not exhibit the AT instability throughout the achievable
region of the rate-distortion pair �R ,D�. Figure 4 shows the
limit of achievable distortion D expected for N→� plotted
versus code rate R for K=1 and K�2. In the case K�2, the
limit of achievable distortion is identical to the rate-
distortion function. The dash-dotted line in Fig. 4 denotes the
AT line for K=2. The region above the AT line denotes that
the RS solution is stable. For K=2, we found that for the
distortion 0.126�D�0.5, RRS�D� can become smaller than
RAT�D�. Nevertheless, this instability may not be serious in
practice, because the region where the RS solution becomes
unstable is narrow.

The annealed approximation of the entropy �10� gives a
lower bound to the rate distortion property. It coincides with
the rate distortion function. According to Opper’s discussion
�20�, the entropy �10� can be represented by the information
entropy formally. The annealed information entropy can give
an upper bound to the rate distortion property. However, its
evaluation is difficult �see Appendix C�.

V. DISTRIBUTION OF CODEWORDS

It has already been shown that both compression using a
sparse matrix and compression using a nonmonotonic per-
ceptron also achieve optimal performance known as Shan-
non’s limit �7,9�. All these schemes and compression using a
parity tree with K�2 hidden units becomes the common EA
order parameter q=0. In compression using a nonmonotonic
perceptron, the �th bit of the reproduced message is defined

as ŷ��s�	 f̂�N−1/2s ·x��, where f̂ is the transfer function with

mirror symmetry, i.e., f̂�−x�= f̂�x� �9�. Due to the mirror

FIG. 4. The rate distortion property of lossy compression using
a parity tree. The limits of achievable code rate R expected for
N→� is plotted versus the distortion D for K=1 �dashed line� and
K�2 �solid line�. The solid line also denotes the rate-distortion
function, which is identical to the limit of achievable distortion for
K�2. The dash-dotted line denotes the AT line for K=2. For
K�3, the RS solution does not exhibit AT instability throughout the
achievable region.
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symmetry of f̂ , both s and −s provide identical output for any
x�. Hence the EA order parameter is likely to become zero.

The transfer function f̂ with parameter � is defined as taking
1 for �x � �� and −1 otherwise. Figure 5 shows the relation-
ship between a codeword and a bit of the reproduced mes-
sage. Figure 5�a� is the case of compression using a non-
monotonic perceptron.

In compression using a parity tree, on the other hand, the
�th bit of the reproduced message is

ŷ��− s� = �
l=1

K

sgn
�K

N
xl

� · �− sl�� = �− 1�Kŷ��s� . �20�

For K=1, i.e., a parity tree is identical to a monotonic per-
ceptron, ŷ��−s�=−ŷ��s� holds. Here, the EA order parameter
becomes q�0. Therefore the distribution of codewords is
biased in SN. Compression using a parity tree with K=1
hidden unit cannot achieve Shannon’s limit. Figure 5�b�
shows the case of compression using a monotonic percep-
tron, i.e., a committee tree and a K=1 parity tree. However,
for an even number of hidden units K, a parity tree also has
the same effect as mirror symmetry.

We will next discuss the case of K�2. Let V�s��SN

be a set of vectors that reversed the signs of an arbitrary
even number of blocks of a codeword s= t�s1 , . . . ,sK�, e.g.,
t�−s1 ,−s2 ,s3 , . . . ,sK��V�s�. The cardinality of the set V�s� is

�V�s�� = �
n=0

�K/2�

KC2n = 2K−1, �21�

where �x� is the largest integer �x. According to Eq. �5�, all
ŝ�V�s� provide identical output for any xl

�. The summation
of all ŝ�V�s� becomes

�
ŝ�V�s�

ŝ = t
„. . . ,2K−2sl + 2K−2�− sl�, . . . … = 0 . �22�

This means that 2K−1 vectors with the same distortion as
codeword s are distributed throughout SN. For instance, Fig.
5�c� shows the distribution of codewords obtained by com-
pression using a K=2 parity tree. The set SN is divided by
two N−1-dimensional hyperplanes whose normal vectors are
orthogonal to each other. For the �th bit of the reproduced
message, the normal vectors of hyperplanes are t�x1

� ,0� and
t�0 ,x2

���RN. Figure 5�d� shows the case of compression us-
ing a K=3 parity tree. Here, although the same effect as
mirror symmetry cannot be seen, nevertheless, EA order pa-
rameter q becomes zero for the reason mentioned above.
This situation is the same for K�4.

With respect to the LDGM code �7�, Murayama suc-
ceeded in developing a practical encoder using the Thouless-
Anderson-Palmer �TAP� approach which introduced inertia
term heuristically �8�. The TAP approach is called belief
propagation �BP� in the field of information theory. Hosaka
et al. applied this inertia term introduced BP to compression
using a nonmonotonic perceptron �11�. In compression using
a parity tree with K hidden units, the number of codewords
which give a minimum distortion is 2K−1. Therefore it may
become easy to find codewords as the number of hidden
units K becomes large. But, in a practical encoding problem,
it may not be easy to use a large K since K�N is needed.

VI. CONCLUSION

We investigated a lossy compression scheme for unbiased
Boolean messages employing a committee tree and a parity
tree, whose transfer functions were monotonic. The lower
bound for achievable distortion in using a committee tree
became small when the number of hidden units K was large.
It did not reach Shannon’s limit, even in the case where
K→�. However, lossy compression using a parity tree with
K�2 hidden units could achieve Shannon’s limit where the
code length became infinity. We assumed the RS ansatz in
our analysis using the replica method. In using a parity tree
with K�2, the RS solution was unstable in the narrow re-
gion. For K�3, the RS solution did not exhibit the AT in-
stability throughout the achievable region.

There is generally more than one code with the same dis-
tortion as a codeword. The EA order parameter, which means
an average overlap between different codewords, need to be
zero to reach Shannon’s limit like several known schemes
which saturate this limit. Therefore it may be a necessary
condition that the EA order parameter becomes zero to reach
Shannon’s limit.

Since the encoding with our method needs exponential
time, we need to employ various efficient polynominal-time
approximation encoding algorithms. It is under way to inves-
tigate the influence of the number of hidden units on the
accuracy of approximation encoding algorithms. In future
work, we intend to evaluate the upper bound to the rate
distortion property without replica.

FIG. 5. Relationship between codeword and bit of reproduced
message in lossy compression using parity tree with K hidden units.
Symbol+denotes bit of the reproduced message is 1 and − denotes
that it is −1. Set SN is divided by K hyperplanes, whose normal
vectors are orthogonal each other. For K�2, vectors with same
distortion as codeword s are distributed throughout SN. �a� A non-
monotonic perceptron, q=0, �b� a K=1 parity tree, q�0, �c� a
K=2 parity tree, q=0, and �d� a K=3 parity tree, q=0.
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APPENDIX A: ANALYTICAL EVALUATION USING THE
REPLICA METHOD

The entropy S�D ,R� can be evaluated by the replica
method:

S�D,R� = lim
n→0

1

nN
ln�Nn�D,R��y,x. �A1�

A moment Nn�D ,R�, which is the number of codewords with
respect to an n-replicated system, can be represented as

Nn�D,R� = Tr
s1,. . .,sn

�
a=1

n

��MD;d„y, ŷ�sa�…� , �A2�

where sa= t�s1
a , . . . ,sK

a � and the superscript a denotes a replica
index. Inserting an identity

1 = �
a	b

�
l=1

K �
−�

�

dql
ab�
sl

a · sl
b −

N

K
ql

ab�
= 
 1

2�i
�n�n−1�K/2� 
�

a	b
�

l

dql
abdq̂l

ab�
�exp��

a	b
�

l

q̂l
ab
sl

a · sl
b −

N

K
ql

ab�� , �A3�

into this expression to separate the relevant order parameter.
Utilizing the Fourier expression of Kronecker’s delta,

��MD;d„y, ŷ�sa�…� = �
i�c−��

i�c+�� d�a

2�i
e�a�D−d„y,ŷ�sa�…�, " c � R ,

�A4�

we can calculate the average moment �Nn�D ,R��y,x for natu-
ral numbers n as

�Nn�D,R��y,x �� 
�
a

d�a� � 
�
a	b

�
l

dql
abdq̂l

ab�
�exp N�R−1ln�� 
�

l

duldvl��
l

e−�1/2�tvlQlvl + ivl · ul�
a

�e−�a
+ �1 − e−�a

�
�y,�ul
a����

y
�

+ � 1

K
ln Tr

�sl
a�

exp
�
a	b

�
l

q̂l
absl

asl
b� −

1

K
�
a	b

�
l

ql
abq̂l

ab + R−1D�
a

�a� , �A5�

where Ql is an n�n matrix having matrix elements �ql
ab� and

�h�y��y = �
y��−1,1�

� 1
2��y − 1� + 1

2��y + 1��h�y� .

Function 
�y , �ul
a�� included in the right hand side of Eq.

�A5� depends on the decoder �details are discussed in the
following sections�. We analyze a system in the thermody-
namic limit N ,M→�, while code rate R is kept finite. This
integral �A5� will be dominated by the saddle point of the
extensive exponent and can be evaluated via a saddle point
problem with respect to �a, ql

ab, and q̂l
ab. Here, we assume

the replica symmetric �RS� ansatz

�a = � ,

ql
ab = �1 − q��ab + q , �A6�

q̂l
ab = �1 − q̂��ab + q̂ ,

where �k,k� is Kronecker’s delta taking 1 if k=k� and 0 oth-
erwise. This ansatz means that all the hidden units are
equivalent after averaging over the disorder.

1. Lossy compression using committee tree for general K

In the lossy compression using the committee tree, the

�y , �ul

a�� included in Eq. �A5� is obtained as


�y,�ul
a�� = 

y�

l=1

K

sgn�ul
a�� . �A7�

Therefore we obtain average entropy SCT�D ,R� as
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SCT�D,R� = extr
�,q,q̂


R−1�� 
�
l=1

K

Dtl�
�ln�e−� + �1 − e−��
��tl�;y���

y

+� Du ln 2 cosh�q̂u −
q̂�1 − q�

2
+ R−1�D� ,

�A8�

where


��tl�;y� 	 Tr
��l=±1�



− y�
l=1

K

�l��
l=1

K

H�Q�ltl� , �A9�

with Q	�q / �1−q�. Utilizing the Fourier expression of the

step function 
�x�=�0
�d��−i�

i� d�̂
2�i e

�̂��−x�, the saddle-point
equations �S

�� = �S
�q = �S

�q̂ =0 become

q =� Du tanh2�q̂u , �A10�

q̂ = 2R−1�� 
�
l=1

K

Dtl� − �1 − e−��
���tl�;y�
e−� + �1 − e−��
��tl�;y��

y

,

�A11�

D =�� 
�
l=1

K

Dtl� e−� − e−�
��tl�;y�
e−� + �1 − e−��
��tl�;y��

y

,

�A12�

where 
���tl� ;y�	�
��tl� ;y� /�q. Substituting the solutions
to the saddle-point equations into Eq. �A8�, the average en-
tropy SCT�D ,R� is obtained. Thus, for any K, we can obtain a
minimum code rate R, which gives SCT�D ,R�=0 for a fixed
distortion D.

2. Lossy compression using committee tree for large K

We concentrate in the following on the simple case of
large K, where the K-multiple integrals can be reduced to a
single Gaussian integral. We assume that the number of hid-
den units K is large but still K�N. Here, the term 
��tl� ;y�
included in Eq. �A8� does not depend on all the individual
integration variables tl but only on the combination
�l=1

K �2H�Qtl�−1�. With the central limit theorem, the term is
given by


��tl�;y� = �
0

�

d��
−�

� d�̂

2�
exp�i�̂� + i�̂y

1
�K

�
l

�2H�Qtl�

− 1� − �̂2
1 −
1

K
�

l

�2H�Qtl� − 1�2�� . �A13�

Therefore we obtain the averaged entropy as

SCT�D,R� = extr
�,q,q̂


R−1�� Dt ln�e−�

+ �1 − e−��H
� qef f

1 − qef f
t���

y

+� Du ln 2 cosh�q̂u −
q̂�1 − q�

2
+ R−1�D� ,

�A14�

where qef f 	�Dt�1−2H�Qt��2= 2
� sin−1q and the saddle-point

equations are

q =� Du tanh2�q̂u , �A15�

q̂ = 2R−1�� Dt
− �1 − e−��H��Qef ft�

e−� + �1 − e−��H�Qef ft�
�

y

, �A16�

D = �� Dt
e−� − e−�H�Qef ft�

e−� + �1 − e−��H�Qef ft�
�

y

, �A17�

with Qef f 	�qef f / �1−qef f� and H��Qef ft�	�H�Qef ft� /�q.

3. Lossy compression using parity tree for general K

In the lossy compression using the parity tree, on the
other hand, the 
�y , �ul

a�� included in Eq. �A5� is obtained as


�y,�ul
a�� = 

y�

l

sgn�ul
a�� . �A18�

Hence we obtain averaged entropy SPT�D ,R� as

SPT�D,R� = extr
�,q,q̂


R−1�� 
�
l=1

K

Dtl�
�ln�e−� + �1 − e−�����tl�;y���

y

+� Du ln 2 cosh�q̂u −
q̂�1 − q�

2
+ R−1�D� ,

�A19�

where

���tl�;y� 	
1

2

1 + y�

l=1

K

�1 − 2H�Qtl��� . �A20�

For cases utilizing a committee tree and a parity tree, only
terms 
��tl� ;y� and ���tl� ;y� are different. Since both the
order parameters q and q̂ at the saddle point of Eq. �A19� are
less than 1, the average entropy SPT�D ,R� can be expanded
with respect to �l=1

K �1−2H�Qtl���	1� as
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SPT�D,R� = extr
�,q,q̂


R−1�ln
1 + e−�

2
− �

m=1

�
1

2m

1 − e−�

1 + e−��2m

��� Dt�1 − 2H�Qt��2m�K�
+� Du ln 2 cosh�q̂u −

q̂�1 − q�
2

+ R−1�D� .

�A21�

We obtain saddle-point equations using this expanded form
of the averaged entropy:

q =� Du tanh2�q̂u , �A22�

q̂ = 2R−1K�
m=1

� 
1 − e−�

1 + e−��2m�� Dt„1 − 2H�Qt�…2m�K−1

�� Dt„1 − 2H�Qt�…2m−1 te−�Qt�2/2

�2�q�1 − q�3/2
, �A23�

D =
e−�

1 + e−� + �
m=1

�
2e−�

�1 + e−��2
1 − e−�

1 + e−��2m−1

��� Dt„1 − 2H�Qt�…2m�K

. �A24�

For K�2, because of the existence of term
��Dt(1−2H�Qt�)2m�K−1 in Eq. �A23�, solutions to the saddle-
point equations can become q= q̂=0. We can find no other
solutions except for q= q̂=0 by solving Eqs. �A22�–�A24�
numerically for K�2. Substituting this into Eq. �A24�, we
obtain D=e−� / �1+e−��.

APPENDIX B: ALMEIDA-THOULESS INSTABILITY OF
REPLICA SYMMETRIC SOLUTION

1. General case

The Hessian computed at the replica symmetric saddle-
point characterizes fluctuations in the order parameters �a,
ql

ab, and q̂l
ab around the RS saddle point. Instability of the RS

solution is signaled by a change of sign of at least one of the
eigenvalues of the Hessian. Let M���a� , �ql

ab� , �q̂l
ab�� be the

exponent of the integrand of the integral �A5�. Equation �A5�
can be represented as

�Nn�D,R��y,x =� 
�
a

d�a� � 
�
a	b

�
l

dql
abdq̂l

ab�
�exp„NM���a�,�ql

ab�,�q̂l
ab��… . �B1�

We expand M around �, q, and q̂ in ��a, �ql
ab, and �q̂l

ab and
then find up to second order

M��� + ��a�,�q + ql
ab�,�q̂ + �q̂l

ab��

= M����,�q�,�q̂�� +
1

2
t�G� + O����3� , �B2�

where

� = t����a�,��q1
ab�,��q̂1

ab�, . . . ,��qK
ab�,��q̂K

ab�� �B3�

is the perturbation to the RS saddle point. The Hessian G is
the following �n+Kn�n−1��� �n+Kn�n−1�� matrix:

G =�
S T T ¯ T
tT U V ¯ V
tT V U ¯ V

� � � � �
tT V V ¯ U

� , �B4�

where n�n matrix S, n�n�n−1� matrix T, and n�n−1�
�n�n−1� matrices U ,V are

S = ��Sa,b�� ,

T = ��Ta,bc�,�T̂a,bc�� ,

U = 
�Uab,cd� �Ũab,cd�

�Ũab,cd� �Ûab,cd�
� ,

V = 
�Vab,cd� �Ṽab,cd�

�Ṽab,cd� �V̂ab,cd�
� , �B5�

with

Sa,b = �2M/��a � �b,

Ta,bc = �2M/��a � ql
bc,

T̂a,bc = �2M/��a � q̂l
bc,

Uab,cd = �2M/�ql
ab � ql

cd,

Ûab,cd = �2M/� q̂l
ab � q̂l

cd,

Ũab,cd = �2M/�ql
ab � q̂l

cd,

Vab,cd = �2M/�ql
ab � ql�

cd �l � l�� ,

V̂ab,cd = �2M/� q̂l
ab � q̂l�

cd �l � l�� ,

Ṽab,cd = �2M/�ql
ab � q̂l�

cd �l � l�� . �B6�

For �� ,q , q̂� to be a local maximum of M, it is necessary for
the Hessian G to be negative definite, i.e., all of its eigenval-
ues must be negative. Matrices U and V contain the quadratic
fluctuations of the order parameters in the same and different
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hidden units, respectively. Because of the block form of G,
the eigenproblem splits into an uncoupled diagonalization of
the two matrices: U−V and

Ĝ = 
 S T

KtT U + �K − 1�V � . �B7�

The eigenvectors of U−V correspond to fluctuations in di-
rections that break the permutation symmetry �PS�. The

eigenvectors of Ĝ represent fluctuations that do not break
this symmetry. The most unstable mode corresponds to an

eigenvector of Ĝ that breaks the replica symmetry �RS�. We
can write the eigenvalue equation as

Ĝ� = �� , �B8�

with

� = t���a�,��ab�,��̂ab�� . �B9�

There are three types of eigenvectors, i.e., �1, �2, and �3
�21�. The first �1 has the form

�a = �, �ab = �, �̂ab = �̂ . �B10�

Using the orthogonality of �1 and �2, the second type of
eigenvector �2 has the form

�a = ��1 − n��, �a = �� ,

�, �otherwise� ,

�ab = �1

2
�2 − n��, �a = � or b = �� ,

�, �otherwise� ,

�̂ab = �1

2
�2 − n��̂, �a = � or b = �� ,

�̂, �otherwise� ,

�B11�

for a specific replica �. In the limit n→0 this eigenvector �2
converges to �1 therefore the eigenvalue of the eigenvector
�2 becomes degenerate with �1’s.

Similarly, using the orthogonality of �2 and �3, the third
type of eigenvector �3 has the form

�a = 0,

�ab =�
1

2
�2 − n��3 − n�� �a = �,b = �� ,

1

2
�3 − n��, �a = � or a = � or b = � or b = �� ,

� �otherwise� ,

�̂ab =�
1

2
�2 − n��3 − n��̂ �a = �,b = �� ,

1

2
�3 − n��̂, �a = � or a = � or b = � or b = �� ,

�̂ �otherwise� ,

�B12�

for two specific replicas � and �. In the limit n→0, pertur-
bations keep symmetry of the eigenvectors �1 and �2 across
the replicas. Therefore �1 and �2 are irrelevant to replica
symmetry breaking �RSB� but only determine the stability
within the RS ansatz. Hence the third eigenvector �3, which
is called the replicon mode, causes RSB. The eigenvalue

equation Ĝ�3=�3�3 with respect to Eq. �B12� splits into
T�3=0 and �U+ �K−1�V��3�=�3�3�, where �3= t�0 ,�3��.
Therefore the eigenproblem of Ĝ is equivalent to that of
U+ �K−1�V.

Let us calculate the elements of U and V. The second
derivative M by ql

ab related to the Uab,cd ,Vab,cd is

�2M
�ql

ab � ql�
cd = R−1�vl

avl
bvl�

c vl�
d �u,v − R−1�vl

avl
b�u,v�vl�

c vl�
d �u,v,

�B13�

where

�g��vl
a���u,v =

�� 
�
l

duldvle
−�1/2�tvQlvl + ivl · ul�g��vl

a���
a

�e−�a
+ �1 − e−�a

�
�y,�ul
a����

y

�� 
�
l

duldvle
−�1/2�tvQlvl + ivl · ul��

a

�e−�a
+ �1 − e−�a

�
�y,�ul
a����

y

, �B14�

for any function g��vl
a��. The second derivative M by q̂l

ab related to the Ûab,cd , V̂ab,cd is
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�2M
� q̂l

ab � q̂l�
cd = �K−1�sasbscsd�s − K−1�sasb�s�scsd�s �l = l�� ,

0 �l � l�� ,
�B15�

where

�g��sa���s =

� Dz Tr
�sa�

g��sa��exp
�q̂z�
a

sa�
� Dz Tr

�sa�
exp
�q̂z�

a

sa�
�B16�

for any function g��sa��. The second derivative M by

ql
ab , q̂l

ab related to the Ũab,cd , Ṽab,cd is

�2M
�ql

ab � q̂l�
cd = �K−1 �l = l�, a = c, b = d� ,

0 �otherwise� .
�B17�

Using Gardner’s method �18�, we find that the RS stability
criterion is

K� 	 1, �B18�

where

� 	 �0 + �K − 1��1,

�0 	 P − 2Q + R ,

�1 	 P� − 2Q� + R�,

P 	 Uab,ab,

Q 	 Uab,ac �b � c� ,

R 	 Uab,cd �a � c,b � d� ,

P� 	 Vab,ab,

Q� 	 Vab,ac �b � c� ,

R� 	 Vab,cd �a � c,b � d� . �B19�

The line K�=1 is called the AT line. Setting K=0, on the
other hand, the matrix U+ �K−1�V is equal to U−V. When
K=0, inequality K�=0	1 of Eq. �B18� always holds.
Therefore permutation symmetry breaking �PSB� does not
occur in this system.

2. For lossy compression using a parity tree
with K=2 hidden units

Let us consider the RS stability of lossy compression us-
ing a parity tree with K=2 hidden units. Here, 
�y , �ul

a�� is
given by 
�y , �ul

a��=
(y�lsgn�ul
a�) therefore solutions to the

saddle-point equations are

q = q̂ = 0, D =
e−�

1 + e−� . �B20�

Substituting Eq. �B20� into Eqs. �B13� and �B15�, we obtain

P� = R−1 4

�2 �1 − 2D�2,

P = Q = R = Q� = R� = 0. �B21�

Therefore, using Eq. �B18�, the RS stability can be obtained
as

R �
8

�2 �1 − 2D�2 	 RAT�D� . �B22�

This proves Eq. �19�.

3. For lossy compression using a parity tree
with K�3 hidden units

Next, let us consider the RS stability of lossy compression
using a parity tree with K�3 hidden units. Here, the solu-
tions to the saddle-point equations are q= q̂=0, D=e−� / �1
+e−�� as well as for K=2. Substituting Eq. �B20� into Eqs.
�B13� and �B15�, we obtain

P = Q = R = P� = Q� = R� = 0. �B23�

Since the inequality K�=0	1 of Eq. �B18� always holds,
the RS solution does not exhibit the AT instability throughout
the achievable region for K�3.

APPENDIX C: A LOWER BOUND TO THE RATE
DISTORTION PROPERTY OF LOSSY COMPRESSION

USING A PARITY TREE

In order to derive a lower bound to the rate distortion
property, an upper bound to the entropy is necessary. Using
Jensen’s inequality, an upper bound to the entropy
Supper�D ,R� is given by

S�D,R� =
1

N
�ln N�D,R��y,x �

1

N
ln�N�D,R��y,x

	 Supper�D,R� . �C1�

After a simple calculation, we obtain the upper bound to the
entropy of lossy compression using a parity tree SPT

upper�D ,R�
as

SPT
upper�D,R� = ln 2 + extr

�

R−1 ln

1 + e−�

2
+ �R−1D�

= − R−1ln 2 + ln 2 − R−1D ln D

− R−1�1 − D�ln�1 − D� . �C2�

KAZUSHI MIMURA AND MASATO OKADA PHYSICAL REVIEW E 74, 026108 �2006�

026108-10



Note that this annealed entropy SPT
anneal�D ,R� is not depend

on the number of hidden units K. Solving SPT
anneal�D ,R�=0

with respect to R, we obtain

R = 1 − h2�D� . �C3�

This shows that the rate distortion function for uniformly
unbiased binary sources �2� can be also derived as a lower
bound to the rate distortion property of compression using a
parity tree.

We next discuss a upper bound to the rate distortion prop-
erty. In order to derive a upper bound to the rate distortion
property, we need an lower bound to the entropy. Using Jens-
en’s inequality, an upper bound to the entropy Supper�D ,R� is
represented by

S�D,R� =
1

N
�ln N�D,R��y,x =

1

N�− ln
1

N�D,R��y,x

� −
1

N
ln� 1

N�D,R��y,x

	 Slower�D,R� . �C4�

This inequality can be also obtained by an annealed informa-
tion entropy as follows. According to Opper’s discussion
�20�, we first define a function that characterizes a version
space as follows:

��s� 	
��MD;d„y, ŷ�s�…�

Tr
s

��MD;d„y, ŷ�s�…�
. �C5�

Since this function ��s� is non-negative and normalized to
Trs��s�=1, it defines a probability with respect to s. There-
fore we obtain the information entropy per bit H�D ,R� as

H�D,R� 	
1

N
�Tr

s
��s�ln

1

��s��y,x

=
1

N
�ln

1

��s��s,y,x

� −
1

N
ln���s��s,y,x

= −
1

N
ln�Tr

s
��s�2�y,x

= −
1

N
ln� 1

N�D,R��y,x

, �C6�

where �g�s��s=Trs��s�g�s�. Using the identity

��s�ln
1

��s�
= �0, if ��MD;d„y, ŷ�s�…� = 0,

N�D,R�−1ln N�D,R� , otherwise,
�C7�

we can easily confirm H�D ,R�=S�D ,R�.
However, it is difficult to evaluate the lower bound Slower�D ,R� directly because �N�D ,R�−1�y,x� �N�D ,R��y,x

−1 . This diffi-
culty is caused by a limitation of the version space due to the distortion. This limitation complicates the probability ��s�.
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