Systems and Computers in Japan, Vol. 27, No. 5, 1996

Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J78-D-II, No. 6, June 1995, pp. 946-953

Capacity of Autocorrelation Associative Memory with
Quantized Synaptic Weight

Kazushi Mimura, Masato Okada and Koji Kurata, Members

Faculty of Engineering Science, Osaka University, Toyonaka,
Japan 560

SUMMARY

The neural chips to speed up the process of a
neural network have recently been developed actively.
Since a conventional neural chip requires quantized
synaptic weights, it is important to know the properties
of the network with such weights. Devices for a 2-layer
network with the same number of input and output
elements have been well developed, and such a device
can be used as an autocorrelation associative memory
by feeding its output to its input.

This paper investigates theoretically the capacity
of an autocorrelation associative memory when its
synaptic weights are quantized with a finite number of
bits. It also proposes an optimum quantization func-
tion. A system with a finite number of elements is
computer simulated. The proposed method can be ap-
plied to the design of a neural chip for associative
memory.

Key words: Associative memory; memory capa-
city; quantization noise; synaptic noise.

1. Introduction

Development of neural chips which speed up a
neural network has been active recently. However,
there has been a problem in that vast numbers of
wirings are required between neurons in a large-scale
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neural network, e.g., the maximum N of wires for a
network consisting of N neurons.

It has been proposed that space paralleling and high-
speed light for such a large-scale wiring be used. A
synaptic weight in an optical system is represented by the
transmission speed of light. Since the synaptic weight is a
real number, it is ideal that the transmission rate is
continuously variable. A method has been proposed that
uses phase modulation of a polarized light. This is not
suitable for integrated circuits since the structure is too
complex. There has also been a method which uses an
optimal mask, but this requires a quantized synaptic
weight since the mask can represent only transmission or
nontransmission.

Quantization is not only important for an optical
neural chip, but generally, for the synaptic weight of
many electronic devices. Therefore, it is important to
find the properties of networks with synaptic weight.
Notably, devices for a 2-layer network have been well
advanced [2, 3]. Such a device can easily be applied to
an autocorrelation associative memory by feeding its
output to its input. Therefore, this paper investigates
the relationship between the memory capacity and the
quantization of synaptic weight in this type of memory.
It has been known that an associative memory can be
analyzed by S/N analysis [4-6], but this cannot be
applied to a synaptic weight. In this paper, an
optimum quantization function is obtained by using
Sompolinsky’s theory [9] which is an expansion of
statistical dynamics [7, 8].

ISSN0082-1666/96/0005-0055
© 1996 Scripta Technica, Inc.



Neuron

i |
1 /Jij L
J=—= 7T 7

%

g

- )

Fig. 1. Structure of associative memory.

2. Outline of Autocorrelation Associative
Memory

Figure 1 shows an outline of the structure of an
autocorrelation associative memory [1]. All the
elements are connected to each other, and each
element changes the state of the whole circuit. Let the
state of the i-th element be s; (= *1), and let the
synaptic weight from the j-th element to the i-th
element beJ;; = J.. No autosynapse is considered, i.e.,
Jij = 0. The state of the circuit changes from s to s’ in

the following:

s’ = sgn [Js] )

t !

1
,SN), S8 = (s'l,...,s'N)

J = (Ji5), s=(s1,...

where sgn is a sign function defined by

sgn(z) = { *1

and t is a transposition, and N is the number of ele-
ments.

z>0
<0

Data stored in the associative memory are in a
dynamic equilibrium state as shown by Eq. (1). In
other words, to memorize p vectors, z;-‘l, L, B s
equivalent to making synaptic weight J so that

§" =sgn[J€"], p=1,...,p )
holds. A method to obtain such a synaptic weight is to
define J as

P
J . .
J”:TV'E &€y, ifj, J>0 (3)
p=1
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A constant J/N is multiplied since the dynamics are not
affected by multiplying a positive constant to all the
elements as shown by Eq. (1). Also £¥ = (%) holds.
This method is called "correlation learning." This
method has an advantage in that no repeated learning
is required, although the number of its vectors is fewer
than other methods such as an error-correction learn-

ing.

If the number of vectors to be memorized exceeds
a certain value, no equilibrium state can be obtained.
The ratio of this criterion number and the number of
the elements are called "memory capacity.” Assuming

w 1
&=9

the memory capacity for a one-half coding is given by
Amit [7] as about 0.138.

with prob.

with prob. @)
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The energy function E of an autocorrelation asso-
ciative memory is defined by

N
1
E=-3 > Jusis )

1,3=1

In an asynchronized autocorrelation associated
memory in which each element changes a state every
time, the energy function simply reduces. Hopfield [1]
has suggested that an associated memory can be treat-
ed as a physical problem by introducing its energy.

3. Capacity of Associated Memory with
Quantized Synaptic Weight

3.1. Outline of calculation method

The capacity of this type of memory reduces when
noise is added to its synaptic weight. Such a noise is
called "synoptic noise." Sompolinsky [9] has investi-
gated theoretically the capacity of an associated mem-
ory when the synaptic noise is a random number hav-
ing a Gaussian distribution with an arbitrary variance.
By using his theory, let us obtain the memory capacity
by converting it to a synaptic noise caused by a quan-
tization of the synoptic weight.

3.2. Sompolinsky’s theory
3.2.1. Model with synaptic noise

A model of an associated memory having a synap-



tic weight with a random number 8 is represented by

P
J . S
Jij:—ﬁza Botby iF4 J>0 (6)

=1

where it is assumed that the random numbers SU have
a Gaussian distribution of

J? .
bij ~ N (o, NAZ) )

and that this is independent of vector &, the size of the
synaptic noise being A; J¥/N acts as a coefficient to
scale the variance of the noise independent of the
number of elements.

Let us consider a model in which. each element
behaves probabilistically and asynchronously so that
methods in physics can be applied.

When an element changes its state, it is selected
randomly or orderly. The new state s; of the i-th
element is given by 1 for probability P(1;), and by 1 for
probability 1 - P(u;), where

1
P(u;) = 1—*——(’”1)
exp T

Ui = E Jij8;
J

If temperature T (= 1/B8) approaches zero in this
model, the model coincides with the model given by
Eq. (1), except for a synchronization of change of state
of the elements, since the fluctuation of the probability
disappears. Therefore, as far as the equilibriumis con-
cerned, the two models are equivalent.

Let us consider the memorized vector Z;'l and
. N
— 1 .
m = <<N‘EIEI<SI>T>> (8)

which is the overlap of £ and an equilibriumstate when
it is recalled as an initial state, where <-> is a mean
temperature, <<->> is mean value of probability
variable &, and [-] is the mean value of probability
variable 8;;.

The overlap m is 1 when the memorized vector is
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recalled in the same form; and m is zero when a ran-
dom vector is recalled. Therefore, whether a vector is
memorized can be judged from the state of the over-
lap, 1'or 0. The capacity @, of a memory can be ob-
tained by p /N, where p_ is the number of the maxi-
mum vectors which do not make m = 0. The first vec-
tor £! is chosen as the initial state to obtain  in the
above statement, but any vector can be chosen since
the vector is selected randomly.

Let the ratio of the number of memorized vectors
p to the number of elements N be a as

_ P
a= ©

Let us evaluate the number of memorized vectors by
using this ratio. .

By applying the replica method [7, 8] to the
model given by Eq. (6) which includes noise, the free
energy per element [9] can be obtained as

f = % <log(l -C)+

1 - T o .
+-2—J(arC +m?) - ZAZCIJ

* dz 22
-T exp | =%
[mV% p(2>

x log {2 cosh BJ | zy/ar + A%2q + m) }

(1 - BJ)C
1-C

(10)

where

(12)

det J(1 —

et J( - Q) (13)
q is called the "Edwards-Anderson orderly variable,"
and represent the correlation between the replicas; r is
the mean square of the overlap of the state of the
element and the unrecalled pattern, and represents the
variance of components (among the total of inputs



from all the elements) which do not contribute to the
recall; C is a parameter for convenience.

By using the saddle-point equation of the free
energy, self-constraint equations of m, ¢ and r are ob-
tained as follows:

< dz 22>
m = exp| ——
—oo V2T P 2
x tanh 8J (z\/ar+A2q+m) (14)
* dz . 22
= C _
1= | 7P\
x tanh® 3J (z\/ ar + A?q + m) (15)

R
(1-C)

(16)

Since a model which behaves deterministically
taking into account a thermal fluctuation corresponds
to its original associative memory, it is necessary to
choose the temperature T as its limit (" — 0, i.e.,q =
1). Then,

m
m=erf | ———
( 2(ar+A2))

7

r=(1-C)" (18)

e ]2 (- ) a9
m(ar 4+ A2) ] 2 (oer 4- A2)

hold. The overlap m is obtained by numerically solving
these three equations. Then the capacity of the
associative memory is obtained from m; erf(x) in Eq.
(17) is an error integration function defined by

T

dor 2 exp (——7‘2> dr

erf(z)= —

v Jo @)

Equations (17) through (19) show that m is the
function of @ and A alone as

m = m(a, A) (21)

When a memorized vector can be recalled, m is ap-

proximately 1. When a memorized vector cannot cor-

rectly be recalled, m starts to reduce, and then m sud-

denly becomes zero. Figure 2 shows the change of the
overlap m against the pattern ratio a, obtained by a
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Fig. 3. Dependence on noise to capacity.

numerical calculation using Eqs. (17) through (19),
assuming A = 0 (no noise). The capacity of the asso-
ciative memory a, = a_(A) is defined by the maximum
value of the number of recalled vectors among the
number of vectors intended to be memorized. From
Fig. 2, the capacity of the memory can be obtained as

g—:(ac,A) = —00

(22)
The capacity of the memory a, can be obtained by a
numerical calculation when the size of a synaptic noise
A is fixed. By repeating this procedure, the relation-
ship between A and the memory capacity «, is as
shown in Fig. 3. This shows that «, is a simple de-
creasing function.

%

3.2.2. Model of synaptic weight with function

Let us consider a circuit in which the synaptic
weight is a function of weight obtained from the Hebb
rule. That is,



Jij = (\/- Zgﬂﬁu> iF 7 (23)

n=1

where F is a nonlinear function to activate the synaptic
weight. Coefficient 1yp keeps the variance of Z&4#E#
constant with respect to p. This model coincides with
a model in which F is linear and synaptic noise is not
contained.

Let us set
(24)

This shows that x;; has a normal distribution with a
variance of 1, from the central limit theorem, since & ¢
is independent. The size of a synaptic noise A (which
corresponds to a noise due to a quantization of synap-
tic weight using a nonlinear function F) has been given
by Sompolinsky [9] as

25)

where

72 Y <« Fz) >
> dz z? 2
= — - \F
= /_oo mexp( 2) (z) (26)
J Y «2F(z) >

T 332
=/ mexp(—-i)mz) @7

A simple calculation shows that J represents the inten-
sity memorizing as a coefficient J in Eq. (3). As a
special case where F(x) = x, a comparison with Eq. (3)
shows that J = 1. To calculate these equations, the
fact thatx in Eq. (24) has a normal distribution is used.
From Eq. (25), A « a. By setting

A = AoV (28)
then
J?
Al T -1 (29)

From Eq. (28), m can be regarded as the func-
tions of @ and A, alone, although m is the function of
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Fig. 4. Geometrical illustration of optimal quantum
function.

a and A. The memory capacity a is a simple reducing
function of A,. Equations (26) and (27) show that the
quantum function producing A = 0 if F(x) = 0 in
which J is equal to J.

Let us consider geometrically a quantum function
which minimizes a quantum noise as shown in Fig. 4.
Let us define the inner product and the norm of a
function space as

2

(f.9) & / \/—exp< 5 ) f(z)g(x)
£l € V(5

The weight of the inner produce represents the
distribution of the synaptic weight. Using this, A is
represented by

_EP

2— p—
ECYI L e

Let the set of quantum functions F be S. Then, F
which gives

A2
min Ag
FeS

is the final value. Let us define a quantity D repre-
sented by

D?* = m>in lcF — z||?

= min (||| ~ 2¢(z, F) + ||z[|*)
3D



where D > 0. Equation (31) represents the square
errors of quantum function F and function x. As Eq.
(1) shows, the dynamics of recall of a memory is in-
dependent of the positive constant of the whole synap-
tic weight. Therefore, F is multiplied by ¢ so that this
becomes as close as possible to function x, where ¢ >
0. Figure 4 shows that ¢ which minimizes |cF - xl2
is given by taking cF on the foot of a perpendicular
fromx to F. (Note, a 2-dimensional plane is illustrated
for simplicity.) Therefore, the quantum function F
which minimizes A is obtained by projecting a set of
quantum functions S onto a hyperspace having a diam-
eter of function x, and by choosing the value of F
which is closest to x in the projection. This is repre-
sented by

min D
FES

3.3. Model with quantized synaptic weight

The capacity of a memory can be obtained by
knowing the intensity of relative noise. When the
quantum function is applied to a synaptic weight, the
relative intensity of a noise can be calculated, and this
can be used to calculate the capacity. The relative
intensity of the noise A is obtained by giving a step
function (a quantum function) to this nonlinear func-
tion. Let us consider a nonlinear function F shown in
Fig. 5. If the quantum function has 8 bits, n = 2kt
1. If

(a1, 0Lz <h

aq, bi_ § x < b‘L
Fa=4q 1 (32)

An,y bn—l §x<bﬂ
k 1, bngm

are substituted into Eqgs. (26), (27) and (29),

. 2 bi+1 bx
ZakH{erf (W) —erf <—\/—§>}

2__ k=0

{Z (ak+1 — ax) exp (-%)}

k=0

2o 3

(33)

is obtained, where

F(x)
1
an
aj
ay| |
0b1~b;~b, X

Fig. 5. General quantum function.
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Fig. 6. Dependenceon 4-level quantum function to ca-
pacity.

a0 =byp =0, any1 =1, bay1 =0

Since the memory capacity is a simple reducing func-
tion of A, the quantum function which maximizes the
memory capacity is determined by obtaining param-
eters ay, ..., a,, by, ..., b, which minimizes A,

3.4. Theoretical results

The optimum quantum function and its memory
capacity were calculated by using Eq. (33), when the
synaptic weight is quantized in 2 levels (1 bit repre-
sentation), 4 levels (2 bits), and 8 levels (3 bits), n
being 0, 1 and 3, respectively. Figure 6 shows the rela-
tionship between the quantum function and the mem-
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Fig. 7. Optimal 4-level quantum function.
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Fig. 8. Optimal 8-level quantum function.

ory capacity, for four levels and » = 1. In this
example, a; and b; are the parameters to make the
quantum function optimum.

Similarly, the optimum quantum function for two
levels becomes a code function (which is 1 atx > 0,
and -1 atx < 0). Figures 7 and 8 show the optimum
quantum functions for four levels (2 bits) and eight
levels (3 bits) respectively. Figure 9 shows the rela-
tionship between the number of bits in the quanti-
zation and the memory capacity.

Figure 9 shows that the memory does not change
significantly even if a very coarse quantization is used.
Figure 6 shows that the memory capacity changes little
around the optimum parameter, i.e., an approximation
of F(x) = x gives the same result.
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4. Computer Simulation
4.1. Method

The theoretical results of proposed method are
not accurate, since it assumes that the number of ele-
ments N is infinite. Therefore, an optimum quantum
function and its memory capacity were obtained by a
computer simulation. The recall capacity of the mem-
ory is defined by a rate of the number of vectors which
can recall the memorized vectors to the number of the
memory elements. However, it is difficult to obtain the
memory capacity by using Eq. (22), since the Monte
Carlo simulation produces results containing some
errors. In this paper, therefore, the memory capacity
is obtained by using the data stored in the circuit.

When the number of memory is infinite, the value
at a discontinuous point of the quantum function does
not cause any problem, since the number of the vectors
to be memorized increases greatly so that the distribu-
tion of the synaptic weight approaches a continuous
point. When the number of elements are finite, how-
ever, some quantum functions have their synaptic
weight on a discontinuous point of the quantum func-
tion. As shown in Fig. 5, when the synaptic weight is
zero, the quantum function is independent of other
parametersay, ...,a,, by, ...,b,. Therefore the value of
the quantum function becomes important. If the syn-
aptic function is zero, this paper assumes that the
quantum function is a; or -a; with a probability of 1/2.

The computer simulation was carried out with N
= 32 (the number of elements). Each vector element
having a value of 1 or -1 is half-coded by using the M-
series random numbers. Then p chosen vectors are
memorized. A vector is chosen from the memorized



vectors. Taking this as an initial state, the state of the
vector is shifted asynchronously. The overlap of the
state, after each element has changed its state 15 times,
and its initial state, is obtained, that is, d = d(p).
Note, it has been confirmed that each element almost
reaches a balanced state. The overlap of vectors x =
(x;) and y = (y;) is defined by

N

!
def ZiYi

d:]—\/-

(34

1=0

An overlap is obtained by calculating the mean of 3200
values obtained with a different random number. The
data stored in a memory circuit I(p) are given by

1) = 22 {(1 - d) log(1 - d)

+(1 + d) log(1 + d)} 35)
Then, the memory capacity is given by
1
a. = —= max [ (p) (36)

NZ

This definition coincides with the definition stated by
Eq. (22), if an overlap m for N — o is approximated
by

a £ ae

1
m(a):{ 0 a>a.

In this paper, an optimum quantum function was ob-
tained by using this equation and by calculating the
memory capacity with the discrete synaptic weight.

4.2. Results of simulation

Figure 10 shows the relationship between the
number of the 4-level quantum functions (» = 1) and
the capacity of the memory, the number of elements
being N = 32.

In the simulation, a; around 0.3 and b, around
1.0 give the maximum memory capacity. These values
are close to the theoretical values in Fig. 7 which are
a; = 0.2994 and b; = 0.9780. This shows that even a
simulation with only 32 elements produces values close
to the theory. If more simulations are carried out,
values closer to the theory would be obtained. In
other words, in a case using a finite number of ele-
ments, its quantum function can be obtained theoret-
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capacity of a system with finite cells.

ically. The optimum quantum function is dependent of
the distribution of the synaptic weights. However, its
memory capacity changes little compared with a case
where a quantization is rough.

5. Conclusions

When a synaptic weight is represented by 1 bit
(two levels), the memory capacity is about 0.114, and
when that is represented by 2 bits (four levels), the
memory capacity is about 0.125. Therefore, it is ob-
vious that the doubling of elements increases the mem-
ory capacity. The main problem is to obtain an opti-
mum memory capacity with a multiple-bits representa-
tion. If there are an infinite number of bits, its quan-
tum function becomes a linear function F(x) = x.
When the number of bits is finite, a quantum function
which makes the memory capacity optimum soon ap-
proaches linear, but the memory capacity does not
increase significantly compared with the case of an
infinite number of bits. It is considered that this is due
to the scattered data in the circuit.

In this paper, the relationship between a quan-
tized synaptic weight and a memory capacity has been
investigated taking a correlation learning with 172
coding alone. It is necessary to investigate in the fu-
ture the effect of a quantized noise of a synaptic weight
(which is determined by other learning methods, such
as the error-correction learning) on the circuit, and the
effect of space coding.
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